I can't verify a relationship between cofactor and determinant

Click For Summary
SUMMARY

The discussion centers on the relationship between cofactors and determinants in the context of linear algebra, specifically referencing the cofactor matrix and its derivation from the metric tensor ##g_{\alpha\beta}##. Key equations established include ##\sum_{j} g_{ij} C_{jk} = 0## for ##k \neq i## and ##\sum_{j} g_{ij} C_{ji} = det(g)##, leading to the conclusion that ##C_{jk} = det(g) g^{jk}##. The work of Rund and Lovelock in "Tensors, Differential Forms, and Variational Principles" is highlighted as a valuable resource for further understanding.

PREREQUISITES
  • Understanding of linear algebra concepts, particularly determinants and cofactors.
  • Familiarity with metric tensors and their properties in differential geometry.
  • Knowledge of Levi-Civita pseudo-tensors and their applications.
  • Basic proficiency in tensor calculus.
NEXT STEPS
  • Study the cofactor expansion of determinants in linear algebra.
  • Explore the properties of metric tensors in differential geometry.
  • Review the section on cofactors in "Tensors, Differential Forms, and Variational Principles" by Rund and Lovelock.
  • Learn about the Levi-Civita symbol and its role in tensor calculus.
USEFUL FOR

This discussion is beneficial for students and professionals in mathematics, physics, and engineering, particularly those focusing on linear algebra, differential geometry, and tensor analysis.

Kisok
Messages
3
Reaction score
0
TL;DR
In "General Relativity" by Hobson, et. al., in p. 66, we find a sentence starting "If we denote the value of the determinant ... " in the lower part of the page. I can not verify this assertion. Please help me the verification.
On that sentence, cofactor of an element of a metric is derived. But I can not verify it. Here I attached the copy of the page.
 

Attachments

  • 그림1.png
    그림1.png
    44.3 KB · Views: 442
  • 그림2.png
    그림2.png
    31.7 KB · Views: 524
Physics news on Phys.org
  • Love
Likes   Reactions: Kisok
It’s because the inverse of ##g_{\mu\nu}## is ##g^{\mu\nu}##, and the inverse of a matrix is given by the matrix of cofactors divided by the determinant.
 
  • Informative
Likes   Reactions: Kisok
Rund and Lovelock ("Tensors, Differential Forms, and Variational Principles") have a good section on this in chapter 4

I hope you are familiar with Levi-Civita pseudo-tensors (https://en.wikipedia.org/wiki/Levi-Civita_symbol)

The determinant of the n-by-n matrix ##g_{\alpha\beta}## is given by:

##g = \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{n\mu_n}##

Now consider the following object:

##\omega^{\alpha\beta}=\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##

##g_{\kappa,\alpha}\omega^{\alpha\beta}=\sum_s \delta^\beta_s \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}\: g_{\kappa,\mu_s} \:g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##

Due to anti-symmetry of Levi-Civita, the only non-zero term in the ##\sum_s## is the one with ##s=\kappa##, but thet term is only non-zero if ##s=\beta=\kappa##. Now if all of this works, then we get the earlier expression for the determinant, so:

##g_{\kappa,\alpha}\omega^{\alpha\beta}=g\delta^\beta_\kappa##

So ##\omega^{\alpha\beta}=g g^{\alpha\beta}##, the inverse times the determinant. The co-factor matrix is here somewhere, but you don't need it to proceed. Note that from the above definition of the determinant

##\partial_c g = \partial_c g_{\beta \alpha}\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n} = g g^{\beta\alpha} \partial_c g_{\alpha\beta}##

Which is what you were after (once we use ##g_{\alpha\beta}=g_{\beta\alpha}##)
 
  • Like
  • Love
Likes   Reactions: vanhees71 and Kisok
Thank you for all the replies there. I will study the precious information and suggestions given by all of you. :smile:
 
Cryo said:
gαβ
Cryo said:
Rund and Lovelock ("Tensors, Differential Forms, and Variational Principles") have a good section on this in chapter 4

I hope you are familiar with Levi-Civita pseudo-tensors (https://en.wikipedia.org/wiki/Levi-Civita_symbol)

The determinant of the n-by-n matrix ##g_{\alpha\beta}## is given by:

##g = \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{n\mu_n}##

Now consider the following object:

##\omega^{\alpha\beta}=\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##

##g_{\kappa,\alpha}\omega^{\alpha\beta}=\sum_s \delta^\beta_s \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}\: g_{\kappa,\mu_s} \:g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##

Due to anti-symmetry of Levi-Civita, the only non-zero term in the ##\sum_s## is the one with ##s=\kappa##, but thet term is only non-zero if ##s=\beta=\kappa##. Now if all of this works, then we get the earlier expression for the determinant, so:

##g_{\kappa,\alpha}\omega^{\alpha\beta}=g\delta^\beta_\kappa##

So ##\omega^{\alpha\beta}=g g^{\alpha\beta}##, the inverse times the determinant. The co-factor matrix is here somewhere, but you don't need it to proceed. Note that from the above definition of the determinant

##\partial_c g = \partial_c g_{\beta \alpha}\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n} = g g^{\beta\alpha} \partial_c g_{\alpha\beta}##

Which is what you were after (once we use ##g_{\alpha\beta}=g_{\beta\alpha}##)
Thank you so much. Not being able to prove this was driving me crazy.

Oh, and I believe that ##\omega^{\alpha\beta}## is the co-factor. (I am new to this forum and may not have yet figured out how to express omega to the alpha, beta correctly.
 
Last edited:
  • Like
Likes   Reactions: vanhees71
matrixbud said:
(I am new to this forum and may not have yet figured out how to express omega to the alpha, beta correctly.
You have figured it out! :smile:
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 6 ·
Replies
6
Views
886
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K