I I want to expand a Gaussian wavepacket in terms of sines

saadhusayn
Messages
17
Reaction score
1
TL;DR Summary
I have a Gaussian wavepacket $$ \phi(x) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{4}}}\exp \Big(-\frac{(x-x_{0})^{2}}{4\sigma^{2}} + ik_{0}(x-x_{0})\Big) $$

I want to find the Fourier sine coefficients when expanding this in terms of $$\psi_{n}(x) = \sqrt{2} \sin(n \pi x)$$.
From this paper, I am trying to compute the coefficients in the expansion of the Gaussian wavepacket

$$\phi(x) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{4}}}\exp \Big(-\frac{(x-x_{0})^{2}}{4\sigma^{2}} + ik_{0}(x-x_{0})\Big) $$ where $$\sigma << 1$$and $$k_{0} >> \frac{1}{\sigma}$$
in terms of the functions $$ \psi_{n}(x) = \sqrt{2}\sin(n\pi x).$$

My attempt is as follows:

$$\phi(x) = \sum_{m}\alpha_{m}\psi_{m}(x) $$

From the orthogonality of sines, we have $$ \int_{-1}^{1}\psi_{m}(x) \psi_{n}(x) dx = 2 \delta_{mn}.$$ This gives us
$$ \alpha_{n} = \frac{\sqrt{2}}{2}\frac{1}{(2\pi\sigma^2)^{\frac{1}{4}}} \int_{-1}^{1} dx \sin(n \pi x) \exp \Big(-\frac{(x-x_{0})^{2}}{4\sigma^{2}} + ik_{0}(x-x_{0})\Big).$$

My next step is to write the sine in terms of exponential functions and to complete the square on both terms to get:

$$ \alpha_{n} = \frac{1}{2i}\frac{1}{(8\pi \sigma^{2})^{\frac{1}{4}}}\int_{-1}^{+1}dx\Bigg(\exp\Big[-\frac{1}{4\sigma^{2}}(x-a_{+})^{2} -\sigma^2(k_{0}+\pi n)^2 +2in \pi x_{0}\Big] - \exp\Big[-\frac{1}{4\sigma^{2}}(x-a_{-})^{2} -\sigma^2(k_{0}-\pi n)^2 -2in \pi x_{0}\Big]\Bigg)$$


Here, $$a_{\pm} = 2\sigma^{2}\Big(\pm i n \pi + \frac{x_{0}}{2 \sigma^{2}} +ik_{0}\Big)$$

The next step is to use the fact that $$\sigma << 1$$ to extend the limits to $$\pm \infty$$ and treat the integral as approximately Gaussian. I get the following approximate result:

$$\alpha_{n} \approx -i(2 \pi \sigma^{2})^{\frac{1}{4}}\Bigg(\exp\Big[-\sigma^2(k_{0}+\pi n)^2 +2in \pi x_{0}\Big] - \exp\Big[-\sigma^2(k_{0}-\pi n)^2 -2in \pi x_{0}\Big]\Bigg)$$

But the correct answer according to the paper is (page 15, equation 5.9)

$$\alpha_{n} \approx i(2 \pi \sigma^{2})^{\frac{1}{4}} \exp\Big[-(k_{0}-\pi n)^{2} \sigma^{2} + i (k_{0} - \pi n) x_{0}\Big]$$

Would this problem be better solved using the stationary phase method or using the error function? Or do I have the right idea here?
 
Physics news on Phys.org
It looks like the paper sets up the problem so that the eigenfunctions are orthogonal on the domain 0 to 1, so start there. I'd also try to do a change variable in the integral in such a way to see that the upper limit will go to infinity while the lower limit stays zero.
 
Yes, you're right about the upper limit being ##1##. Also, the fact that ##\sigma << 1## implies that we might as well take the upper limit to ##+\infty##. But other than a factor in front, I don't see how that changes my answer.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top