- #1
Bootleg
- 2
- 0
Hello.
It is said that if we exchange two electrons, we can't tell which is which. Identical mass, charge, etc. So if I hold two electrons, one in each hand, and someone switched them, I wouldn't be able to know. But one way to distinguish particles is their trajectory. If I have a very long 1D line with an electron at each end, and I measure their kinetic energies, and a very short while after, I measure their positions again. I can see both of them have moved, but their positions can be related to their velocities times the time interval, i.e d=v*t for each electron... Now I can pretty confidently say that the electron to the right is still to the right, and the electron that was to the left before is still to the left, because let's say their speed was small. Or alternatively, it would break the speed of light if the left electron had moved all the way to the other end of the 1D line in that small time interval and vice versa, and hence I can distinguish the two electrons. Maybe a long time after, the wave functions would overlap due to Schrodinger equation, and then they would be truly indistinguishable.
So is it possible in situations like these to actually distinguish two electrons, or did I mess up?
It is said that if we exchange two electrons, we can't tell which is which. Identical mass, charge, etc. So if I hold two electrons, one in each hand, and someone switched them, I wouldn't be able to know. But one way to distinguish particles is their trajectory. If I have a very long 1D line with an electron at each end, and I measure their kinetic energies, and a very short while after, I measure their positions again. I can see both of them have moved, but their positions can be related to their velocities times the time interval, i.e d=v*t for each electron... Now I can pretty confidently say that the electron to the right is still to the right, and the electron that was to the left before is still to the left, because let's say their speed was small. Or alternatively, it would break the speed of light if the left electron had moved all the way to the other end of the 1D line in that small time interval and vice versa, and hence I can distinguish the two electrons. Maybe a long time after, the wave functions would overlap due to Schrodinger equation, and then they would be truly indistinguishable.
So is it possible in situations like these to actually distinguish two electrons, or did I mess up?