(adsbygoogle = window.adsbygoogle || []).push({}); Identical Particles -- Silly question

1. The problem statement, all variables and given/known data

Reviewing for final, can someone check this really quick?

Two non-interacting particles are in an infinite cube, each side of length L. Determine the two-particle wave function and also the energy of the ground state and the first excited state:

a) The particles are distinguishable

b) The particles are identical bosons of spin 0

c) The particles are identical fermions of spin 1/2 (also: identify the singlet and triplet states)

2. Relevant equations

For a 3-D infinite potential box:

[tex]\psi(x,y,z)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_x \pi x}{L}\right)Sin\left(\frac{n_y \pi y}{L}\right)Sin\left(\frac{n_z \pi z}{L}\right)[/tex]

[tex]E_{n_xn_yn_z}=\frac{\hbar^2 \pi^2}{2 m L^2} (n_x^2+n_y^2+n_z^2)[/tex]

And also:

[tex]\psi(\vec{r_1},\vec{r_2})_{\pm}=A[\psi_a(\vec{r_1})\psi_b(\vec{r_2})\pm\psi_a(\vec{r_2})\psi_b(\vec{r_1})][/tex]

And don't forget about spin:

[tex]\psi(x)=\psi(x)\chi^{\pm}[/tex]

3. The attempt at a solution

a) For distinguishable

Ground state:

[tex]E_{111}=\frac{3\hbar^2 \pi^2}{2 m L^2} [/tex]

First excited state (degeneracy exists):

[tex]E_{112}=E_{121}=E_{211}=\frac{3\hbar^2 \pi^2}{ m L^2} [/tex]

[tex]\psi(\vec{r_1},\vec{r_2})=\Psi_a(x_1,y_1,z_1)\Psi_b(x_2,y_2,z_2)[/tex]

Where

[tex]\psi_a(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_1}{L}\right)Sin\left(\frac{n_{y_1} \pi y_1}{L}\right)Sin\left(\frac{n_{z_1} \pi z_1}{L}\right)[/tex]

[tex]\psi_b(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_2}{L}\right)Sin\left(\frac{n_{y_2} \pi y_2}{L}\right)Sin\left(\frac{n_{z_2} \pi z_2}{L}\right)[/tex]

b)For identical bosons of spin 0

Ground state:

[tex]E_{111}=\frac{3\hbar^2 \pi^2}{2 m L^2} [/tex]

First excited state (no degeneracy)

[tex]E_{112}=\frac{3\hbar^2 \pi^2}{ m L^2} [/tex]

[tex]\psi(\vec{r_1},\vec{r_2})_{+}=A[\psi_a(x_1,y_1,z_1)\psi_b(x_2,y_2,z_2)+\psi_a(x_2,y_2,z_2)\psi_b(x_1,y_1,z_1)][/tex]

Where

[tex]\psi_a(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_1}{L}\right)Sin\left(\frac{n_{y_1} \pi y_1}{L}\right)Sin\left(\frac{n_{z_1} \pi z_1}{L}\right)[/tex]

[tex]\psi_b(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_2}{L}\right)Sin\left(\frac{n_{y_2} \pi y_2}{L}\right)Sin\left(\frac{n_{z_2} \pi z_2}{L}\right)[/tex]

[tex]\psi_a(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_2}{L}\right)Sin\left(\frac{n_{y_1} \pi y_2}{L}\right)Sin\left(\frac{n_{z_1} \pi z_2}{L}\right)[/tex]

[tex]\psi_b(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_1}{L}\right)Sin\left(\frac{n_{y_2} \pi y_1}{L}\right)Sin\left(\frac{n_{z_2} \pi z_1}{L}\right)[/tex]

c) Identical fermions of spin 1/2

Ground state:

[tex]E_{112}=\frac{3\hbar^2 \pi^2}{m L^2} [/tex]

First excited state:

[tex]E_{122}=\frac{9\hbar^2 \pi^2}{2 m L^2} [/tex]

[tex]\psi(\vec{r_1},\vec{r_2})_{-}=A[\psi_a(x_1,y_1,z_1)\chi^{+}\psi_b(x_2,y_2,z_2)\chi^{+}-\psi_a(x_2,y_2,z_2)\chi^{+}\psi_b(x_1,y_1,z_1)\chi^{+}][/tex]

Wave functions are the same as in part b).

How do I distinguish between a singlet and triplet state? I know singlet is S=0, and triplet is S=1, but not quite sure what it wants.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Identical Particles - Silly question

**Physics Forums | Science Articles, Homework Help, Discussion**