Ackbach said:
I think we really have to rule out those two "complex" solutions. If you look at the displayed equation in post # 2, you'll see why. The only thing that could relieve the situation is if $b=0$.
I did rule out the complex solutions.
If $a > 0$, then $x = b, \pm i\sqrt{a}$.
If $a < 0$, then $x = b, \pm\sqrt{a}$.
If $a = 0$, then $x = b, 0$ where $0$ is a double root.
Since we are dealing with a glycolysis model, the complex solutions wouldn't play any part since $x$ is ADP which has to be real.
If $a > 0$, then our only steady state is $\left(b,\frac{b}{a + b^2}\right)$.
If $a < 0$, then our steady states are $\left(b,\frac{b}{a + b^2}\right)$ and $\left(\sqrt{a}, \frac{\pm\sqrt{a}}{2a}\right)$ but this is only a solution if $\pm\sqrt{a} = b$ or $b^2 = a$.
I guess this could be said then correct?
---------- Post added at 10:37 PM ---------- Previous post was at 10:27 PM ----------
dwsmith said:
I did rule out the complex solutions.
If $a > 0$, then $x = b, \pm i\sqrt{a}$.
If $a < 0$, then $x = b, \pm\sqrt{a}$.
If $a = 0$, then $x = b, 0$ where $0$ is a double root.
Since we are dealing with a glycolysis model, the complex solutions wouldn't play any part since $x$ is ADP which has to be real.
If $a > 0$, then our only steady state is $\left(b,\frac{b}{a + b^2}\right)$.
If $a < 0$, then our steady states are $\left(b,\frac{b}{a + b^2}\right)$ and $\left(\sqrt{a}, \frac{\pm\sqrt{a}}{2a}\right)$ but this is only a solution if $\pm\sqrt{a} = b$ or $b^2 = a$.
I guess this could be said then correct?
If $a = 0$, then our steady states are $\left(b,\frac{b}{a + b^2}\right)$ and $\left(0,\frac{b}{a}\right)$ but this is only a steady state is $b = 0$.
I suppose then the only steady state for all cases is $\left(b,\frac{b}{a + b^2}\right)$ since the other restrict a and b to work.
If it were true that kinetic parameters could never be equal, it would eliminate the trouble with the steady states. However, I am not sure if that is an always be the case though.
---------- Post added at 10:55 PM ---------- Previous post was at 10:37 PM ----------
I guess we could evaluate two cases then. Case 1 kinetic parameters are never equal leading to only $\left(b,\frac{b}{a+b^2}\right)$.
So if I wanted to graph the null clines for case 1, I would simply plot x = b and $y = \frac{b}{a+b^2}$, correct?