I Identity involving exponential of operators

thatboi
Messages
130
Reaction score
20
Hey all,
I saw a formula in this paper: (https://arxiv.org/pdf/physics/0011069.pdf), specifically equation (22):
1680505109627.png

and wanted to know if anyone knew how to derive it. It doesn't seem like a simple application of BCH to me.
Thanks.
 
Last edited:
Physics news on Phys.org
Please use LaTeX to type formulae. It's much easier to read!

The trick is that
$$(\partial_x - \mathrm{i} e/\hbar By)\psi (\vec{x}) = \exp(\mathrm{i} e B x y/\hbar) \partial_x \left [\exp(-\mathrm{i} e B x y/\hbar) \psi(\vec{x}) \right]$$
for all ##\psi(\vec{x})## (in the domain of the operators applied ;-)).

By iteration it's further easy to see that for ##k \in \mathbb{N}##
$$(\partial_x - \mathrm{i} e/\hbar By)^k\psi (\vec{x}) = \exp(\mathrm{i} e B x y/\hbar) \partial_x^k \left [\exp(-\mathrm{i} e B x y/\hbar) \psi(\vec{x}) \right].$$
Plugging this into the series defining the operator exponential you get Eq. (22) of the paper.
 
  • Like
Likes thatboi, topsquark and gentzen
Or, leaving out a lot of details: ##[\partial _x, y] = 0##.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top