I Identity involving exponential of operators

thatboi
Messages
130
Reaction score
20
Hey all,
I saw a formula in this paper: (https://arxiv.org/pdf/physics/0011069.pdf), specifically equation (22):
1680505109627.png

and wanted to know if anyone knew how to derive it. It doesn't seem like a simple application of BCH to me.
Thanks.
 
Last edited:
Physics news on Phys.org
Please use LaTeX to type formulae. It's much easier to read!

The trick is that
$$(\partial_x - \mathrm{i} e/\hbar By)\psi (\vec{x}) = \exp(\mathrm{i} e B x y/\hbar) \partial_x \left [\exp(-\mathrm{i} e B x y/\hbar) \psi(\vec{x}) \right]$$
for all ##\psi(\vec{x})## (in the domain of the operators applied ;-)).

By iteration it's further easy to see that for ##k \in \mathbb{N}##
$$(\partial_x - \mathrm{i} e/\hbar By)^k\psi (\vec{x}) = \exp(\mathrm{i} e B x y/\hbar) \partial_x^k \left [\exp(-\mathrm{i} e B x y/\hbar) \psi(\vec{x}) \right].$$
Plugging this into the series defining the operator exponential you get Eq. (22) of the paper.
 
  • Like
Likes thatboi, topsquark and gentzen
Or, leaving out a lot of details: ##[\partial _x, y] = 0##.

-Dan
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top