Identity Theorem for power series

  • Context: High School 
  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    Identity Power Proof
Click For Summary

Discussion Overview

The discussion revolves around the validity of a proof related to the Identity Theorem for power series. Participants analyze the assumptions made when dividing by a variable and the implications for continuity and limits, particularly in the context of the neighborhood of zero.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants question the validity of the proof, noting that dividing by ##z## assumes ##z \neq 0##, which complicates the application of limits at ##z=0##.
  • Others argue that the functions involved are analytic and continuous, allowing for the use of limits to establish equality at ##z=0##.
  • One participant suggests that the theorem holds even if the series are equal only at an infinite sequence of points converging to ##0##.
  • Another participant points out that the term "neighborhood" often leads to confusion regarding limits and the actual substitution of ##z=0##.
  • Some participants emphasize the need for continuity at ##0## for the arguments to hold, suggesting that this continuity should be established prior to applying the theorem.
  • A later reply introduces a simpler proposition that reinforces the idea that if a power series equals zero in a neighborhood of zero, all coefficients must be zero.

Areas of Agreement / Disagreement

Participants express differing views on the validity of the proof and the assumptions made. There is no consensus on whether the original proof is valid, as some find it sloppy while others defend its reasoning.

Contextual Notes

Participants note that the continuity of functions defined by power series at ##0## needs to be proven, which is typically established through uniform convergence on compact subsets within the circle of convergence.

Hill
Messages
792
Reaction score
614
Consider this proof:
1714866541561.png

Is it a valid proof?

When we divide by ##z##, we assume that ##z \neq 0##. So, we cannot put ##z=0## on the next step. IOW, after dividing by ##z## we only know that $$c_1+c_2z+c_3z^2+...=d_1+d_2z+d_3z^2+...$$ in a neighborhood of ##0## excluding ##0##.
 
Last edited:
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
We know that ##\sum_{j=0}^\infty c_jz^j=\sum_{j=0}^\infty d_jz^j ## for all ##z\in U(0)## in a neighrhood of ##0.## By the argument you posted, we see that ##c_0=d_0## and therefore that
$$
\sum_{j=1}^\infty c_jz^{j-1}=\sum_{j=1}^\infty d_jz^{j-1}\quad \forall\,z\in U(0)-\{0\}
$$
Therefore,
$$
c_1=\lim_{z \to 0}\sum_{j=1}^\infty c_jz^{j-1}=\lim_{z \to 0} \sum_{j=1}^\infty d_jz^{j-1}=d_1\quad \forall\,z\in U(0)-\{0\}
$$
 
  • Like
Likes   Reactions: PeroK
fresh_42 said:
We know that ##\sum_{j=0}^\infty c_jz^j=\sum_{j=0}^\infty d_jz^j ## for all ##z\in U(0)## in a neighrhood of ##0.## By the argument you posted, we see that ##c_0=d_0## and therefore that
$$
\sum_{j=1}^\infty c_jz^{j-1}=\sum_{j=1}^\infty d_jz^{j-1}\quad \forall\,z\in U(0)-\{0\}
$$
Therefore,
$$
c_1=\lim_{z \to 0}\sum_{j=1}^\infty c_jz^{j-1}=\lim_{z \to 0} \sum_{j=1}^\infty d_jz^{j-1}=d_1\quad \forall\,z\in U(0)-\{0\}
$$
Yes, of course. I don't doubt the theorem. I question the quoted proof.
 
Hill said:
Yes, of course. I don't doubt the theorem. I question the quoted proof.
I think it is only sloppy. My argument with the limits works because the functions are analytical (per construction) and therefore continuous, and the equation holds in ##\{0\},## too, because it is a limit point.
 
  • Like
Likes   Reactions: PeroK
fresh_42 said:
I think it is only sloppy. My argument with the limits works because the functions are analytical (per construction) and therefore continuous, and the equation holds in ##\{0\},## too, because it is a limit point.
Your argument works, undoubtfully. The quoted proof, OTOH, would fail a high school exam, I think.
 
The theorem holds even if the two series are equal only on an infinite sequence of points converging to ##0##.
 
Math problems with the word "neighborhood" make my brain instantly think of limits and ε-δ arguments. It is common, albeit sometimes sloppy, shorthand for people to say ##z=0## when they really mean ##\lim_{z \rightarrow 0}##.
 
I agree, but in this case the author seems to mean actually putting ##z=0##, because a bit later, when talking about strengthening this result, he says,
The verification is essentially the same, only instead of putting z = 0, we now take the limit as z approaches 0, either along the segment of curve or through the sequence of points.
 
Hill said:
Consider this proof:
View attachment 344552
Is it a valid proof?

When we divide by ##z##, we assume that ##z \neq 0##. So, we cannot put ##z=0## on the next step. IOW, after dividing by ##z## we only know that $$c_1+c_2z+c_3z^2+...=d_1+d_2z+d_3z^2+...$$ in a neighborhood of ##0## excluding ##0##.
The fact is true, so any "proof", no matter how weak, might seem valid. But that "proof" never uses their equality in the neighborhood, so you should be skeptical. Try applying that "proof" to ##f(z) \equiv 0## and ##g(z) = z## at ##z=0##.
 
  • Like
Likes   Reactions: PeroK and Hill
  • #10
Just to add something simple but useful. The proposition is identical to saying that if, for all ##z## in a neighbourhood of 0, we have:
$$c_0 + c_1z + c_2z^2 +c_3z^3 \dots = 0$$Then all the coefficients are zero.

And, as any neighbourhood of zero contains a real, open interval of zero, then the result follows immediately from the real case.
 
  • Like
Likes   Reactions: weirdoguy, docnet and FactChecker
  • #11
fresh_42 said:
We know that ##\sum_{j=0}^\infty c_jz^j=\sum_{j=0}^\infty d_jz^j ## for all ##z\in U(0)## in a neighrhood of ##0.## By the argument you posted, we see that ##c_0=d_0## and therefore that
$$
\sum_{j=1}^\infty c_jz^{j-1}=\sum_{j=1}^\infty d_jz^{j-1}\quad \forall\,z\in U(0)-\{0\}
$$
Therefore,
$$
c_1=\lim_{z \to 0}\sum_{j=1}^\infty c_jz^{j-1}=\lim_{z \to 0} \sum_{j=1}^\infty d_jz^{j-1}=d_1\quad \forall\,z\in U(0)-\{0\}
$$
For this to work, the functions defined by the power series must be continuous at ##0##, as you pointed out in a later post. This continuity needs to be proved, and this is done by using the property that a power series converges uniformly on compact subsets inside its circle of convergence (or is there another way to prove that?). So to be complete, the OP's book should have dealt with these issues before the theorem quoted.
 
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K