If ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
If a is an odd integer, then it can be expressed as a=2k+1 for some integer k. The proof shows that a² can be rewritten as 4k(k+1)+1, where k(k+1) is the product of two consecutive integers, thus even. This leads to the conclusion that a²=8m+1, confirming that a²≡1 (mod 8). The discussion also clarifies that even when k=0 for a=1, the product k(k+1) remains even, supporting the overall proof. The conclusion is that for any odd integer a, a² will always be congruent to 1 modulo 8.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove the assertion below:
If ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##.
Relevant Equations
None.
Proof:

Suppose ## a ## is an odd integer.
Then ## a=2k+1 ## for some ## k\in\mathbb{Z} ##.
Note that ## a^{2}=(2k+1)^{2}=4k^{2}+4k+1=4k(k+1)+1 ##.
Since ## k(k+1) ## is the product of two consecutive integers,
it follows that ## k(k+1) ## must be even.
This means ## k(k+1)=2m ## for some ## m\in\mathbb{Z} ##.
Thus ## a^{2}=4(2m)+1=8m+1\implies a^{2}\equiv 1\pmod {8} ##.
Therefore, if ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##.
 
  • Like
Likes fresh_42 and Delta2
Physics news on Phys.org
I think this is mostly correct, not sure if we should take separately the case ##a=1## (which is obvious that it holds) but for ##a=1## the ##k ## in the proof is zero so I am not sure if ##k(k+1)=0(0+1)=0## can be said to be even in this case.
 
Delta2 said:
I think this is mostly correct, not sure if we should take separately the case ##a=1## (which is obvious that it holds) but for ##a=1## the ##k ## in the proof is zero so I am not sure if ##k(k+1)=0(0+1)=0## can be said to be even in this case.
Why not? ##0=2\cdot 0## is even. It has to be since ##2\mathbb{Z}## is a subgroup of ##\mathbb{Z}.##
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top