MHB If a subset T of S is dependent, then S itself dependent

  • Thread starter Thread starter Guest2
  • Start date Start date
Click For Summary
If a subset T of a vector space S is dependent, then S is also dependent due to the presence of a finite set of distinct elements in T that can be expressed as a linear combination equating to zero, with non-zero coefficients. Additionally, if any element in S is a scalar multiple of another, S is dependent, as this relationship also leads to a linear combination that equals zero. The discussions emphasize the necessity of having at least one non-zero coefficient in these combinations to establish dependence. Furthermore, the presence of the zero vector in any set automatically renders it dependent. Overall, the conditions for linear dependence in vector spaces hinge on the relationships between the elements and the coefficients in their linear combinations.
Guest2
Messages
192
Reaction score
0
1. Let $V$ be a vector space. Let $S \subset V$, and let $T \subset S$. Show that if $T$ is dependent then $S$ itself dependent.

If $T$ is dependent then there's finite set of distinct elements in $T$, say $y_{1}, \ldots, y_{n}$ and a corresponding set of scalars $a_1, \ldots, a_{n}$ such that $\sum_{i=1}^{n} a_iy_i = 0$. Since $T \subset S$, such $y_{1}, \ldots, y_{n}$ and $a_1, \ldots, a_{n}$ also belong to $S$, therefore $S$ itself dependent.

2. If one element in $S$ is scalar multiple of another, then $S$ is dependent.

Let the elements be $x_{1}$ and $x_2$, and the $c_1$ be the scalar. We have $x_{1} = c x_2 \implies x_1-cx_2 = 0$. Thus $S$ is dependent.

Are my attempts okay?
 
Last edited:
Physics news on Phys.org
Guest said:
1. Let $V$ be a vector space. Let $S \subset V$, and let $T \subset S$. Show that if $T$ is dependent then $S$ itself dependent.

If $T$ is dependent then there's finite set of distinct elements in $T$, say $y_{1}, \ldots, y_{n}$ and a corresponding set of scalars $a_1, \ldots, a_{n}$ such that $\sum_{i=1}^{n} a_iy_i = 0$. Since $T \subset S$, such $y_{1}, \ldots, y_{n}$ and $a_1, \ldots, a_{n}$ also belong to $S$, therefore $S$ itself dependent.

This is not quite true, we ALSO require that NOT ALL the $a_i$ are 0.

2. If one element in $S$ is scalar multiple of another, then $S$ is dependent.

Let the elements be $x_{1}$ and $x_2$, and the $c_1$ be the scalar. We have $x_{1} = c x_2 \implies x_1-cx_2 = 0$. Thus $S$ is dependent.

Are my attempts okay?

See my comment above. It's *very* close, which coefficient in your linear combination is non-zero?
 
Deveno said:
This is not quite true, we ALSO require that NOT ALL the $a_i$ are 0.
See my comment above. It's *very* close, which coefficient in your linear combination is non-zero?
Oh, I see I missed the same condition both times. We should have $c \ne 0$, since, as you said, all $a_i$ can't be zero; but also I think because if $c= 0$, then $x_1$ and $x_2$ wouldn't be distinct.
 
Guest said:
Oh, I see I missed the same condition both times. We should have $c \ne 0$, since, as you said, all $a_i$ can't be zero; but also I think because if $c= 0$, then $x_1$ and $x_2$ wouldn't be distinct.

Oh, so close...

In your second example, if $c = 0$ we have a linearly dependent set, since $0x_1 = 0$, and the set consisting of the $0$-vector is always a linearly dependent set (in fact, any set CONTAINING the 0-vector is likewise linearly dependent).

But the non-zero coefficient we have in:

$x_1 - cx_2 = 0$

is the coefficient of $x_1$, which is $1$ and in a field, we can NEVER have (by definition) $1 = 0$.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K