MHB If y = tan inverse (cot x) + cot inverse (tan x)

  • Thread starter Thread starter rahulk1
  • Start date Start date
  • Tags Tags
    Inverse Tan
Click For Summary
The equation y = tan inverse (cot x) + cot inverse (tan x) simplifies to y = 2arctan(cot(x)). By taking the tangent of both sides, it leads to the relationship tan(y/2) = cot(x). This results in the expression y = π(2k+1) - 2x, where k is an integer. Consequently, the derivative dy/dx is calculated to be -2.
rahulk1
Messages
13
Reaction score
0
if y = tan inverse (cot x) + cot inverse (tan x)
 
Physics news on Phys.org
Then what?
 
Why -2

- - - Updated - - -

y = tan inverse (cot x) + cot inverse (tan x)

How answer is -2
 
This is a calculus question...please don't continue to post calculus questions in other forums.

If given:

$$y=\arctan\left(\cot(x)\right)+\arccot\left(\tan(x)\right)$$

Then we should observe that:

$$\arccot\left(\tan(x)\right)=\arctan\left(\cot(x)\right)$$

And so we may write:

$$y=2\arctan\left(\cot(x)\right)$$

or:

$$\frac{y}{2}=\arctan\left(\cot(x)\right)$$

Now, we may take the tangent of both sides to get:

$$\tan\left(\frac{y}{2}\right)=\cot(x)$$

This implies (because of the relationship between co-functions and the periodicity of the tangent/cotangent functions):

$$\frac{y}{2}=\frac{\pi}{2}(2k+1)-x$$ where $$k\in\mathbb{Z}$$

or:

$$y=\pi(2k+1)-2x$$

Thus:

$$\d{y}{x}=-2$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K