I Incomplete geodesics in a singularity, do they warrant quantum concerns?

walkeraj
Messages
17
Reaction score
4
Question: The idea of a continuum breaks down for a singularity when a geodesic become incomplete (the breaking of the idea that there was a continuous succession, where no part could be distinguished from neighboring parts, except by arbitrary division), and so with that does this indicate a scale change from classical to quantum? That is, is space-time necessarily geodesic incomplete at the quantum scale?
 
Physics news on Phys.org
walkeraj said:
Question: The idea of a continuum breaks down for a singularity when a geodesic become incomplete (the breaking of the idea that there was a continuous succession, where no part could be distinguished from neighboring parts, except by arbitrary division), and so with that does this indicate a scale change from classical to quantum? That is, is space-time necessarily geodesic incomplete at the quantum scale?
You question is not clear to me, but if you are talking about the continuity of the geodesic, then all geodesics, complete and incomplete, are continuous. If fact they are smooth as in differentiable.
 
walkeraj said:
The idea of a continuum breaks down for a singularity when a geodesic become incomplete
This is not correct. The "singularity" is not part of the manifold; the manifold itself is a perfectly valid continous open set.

The rest of your post is based on this invalid premise, and when that is corrected, your question is not well posed.
 
walkeraj said:
with that does this indicate a scale change from classical to quantum? That is, is space-time necessarily geodesic incomplete at the quantum scale?
This looks like personal speculation, which is off limits here.

This thread is now closed.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top