Undergrad Increase in surface charge density in different frames of reference

Click For Summary
The discussion centers on the confusion surrounding equation 5.22 in Purcell's Electricity and Magnetism, specifically regarding the use of relativistic velocity addition. Participants clarify that the goal is to calculate the primed velocity of electrons, which justifies the use of the equation u'=(u-v)/(1-uv/c^2). There is a debate about whether the reverse transformation should be applied, but it is noted that the sign of v must be negative to maintain consistency. The terminology used in the book is criticized as misleading, particularly the labeling of the equations related to velocity addition. Overall, the conversation highlights the complexities of relativistic transformations in different frames of reference.
lys04
Messages
144
Reaction score
5
I am reading Purcell's Electricity and Magnetism and am getting confused on equation 5.22. It seems to me they are using relativistic velocity addition for u' which is u'=(u-v)/(1-uv/c^2), but aren't we solving for the velocity of the electrons in the test charge's frame of reference, so should be using the reverse transformation instead? i.e u=(u'+v)/(1+u'v/c^2)?
The only way this equation has the correct sign is if v=-v though, I guess this makes sense because if in the lab's frame the test charge is moving to the right with velocity v then in the test charge's frame of reference the lab is moving to the left with same speed?
1726964398494.jpeg
1726964408189.jpeg
1726964415294.jpeg
 
Physics news on Phys.org
lys04 said:
I am reading Purcell's Electricity and Magnetism and am getting confused on equation 5.22. It seems to me they are using relativistic velocity addition for u' which is u'=(u-v)/(1-uv/c^2), but aren't we solving for the velocity of the electrons in the test charge's frame of reference, so should be using the reverse transformation instead? i.e u=(u'+v)/(1+u'v/c^2)?
No, they want to calculate the primed velocity of the electrons.

In the book is misleading, that they call (before Eq. 5.22) the Eq. G.7 "formula for addition of velocities". That name fits better to the inverse of it, Eq. G.8.
 
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 87 ·
3
Replies
87
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K