Indicial notation - Levi-Cevita and Tensor

  • Context: MHB 
  • Thread starter Thread starter jasonmcc
  • Start date Start date
  • Tags Tags
    Notation Tensor
Click For Summary
SUMMARY

The discussion focuses on using indicial notation to demonstrate the equation involving the Levi-Cevita symbol and a tensor, specifically: $$ \mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{imk} + \mathcal{A}_{mk}\varepsilon_{ijm} = \mathcal{A}_{mm}\varepsilon_{ijk}. $$ The user explores rearranging and expanding terms, ultimately concluding that the expression simplifies to zero. An alternative approach using the properties of the Levi-Cevita symbol is suggested, which leads to a more efficient simplification through the application of Kronecker delta rules.

PREREQUISITES
  • Understanding of indicial notation
  • Familiarity with the Levi-Cevita symbol
  • Knowledge of tensor algebra
  • Basic principles of Kronecker delta
NEXT STEPS
  • Study the properties of the Levi-Cevita symbol in tensor calculus
  • Learn about Kronecker delta and its applications in tensor equations
  • Explore advanced tensor algebra techniques for simplification
  • Investigate the implications of indicial notation in physics and engineering
USEFUL FOR

Mathematicians, physicists, and engineers who work with tensor calculus and seek to understand the applications of indicial notation and the Levi-Cevita symbol in complex equations.

jasonmcc
Messages
10
Reaction score
0
Use indicial notation to show that:
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{imk} + \mathcal{A}_{mk}\varepsilon_{ijm} = \mathcal{A}_{mm}\varepsilon_{ijk}
$$
I'm probably missing an easier way, but my approach is to rearrange and expand on the terms:
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{mki} + \mathcal{A}_{mk}\varepsilon_{mij} = \mathcal{A}_{mm}\varepsilon_{ijk}
$$
Expanding the first term
$$
\mathcal{A}_{mi}\varepsilon_{mjk} = \varepsilon_{1jk}\mathcal{A}_{1i} + \varepsilon_{2jk}\mathcal{A}_{2i} + \varepsilon_{3jk}\mathcal{A}_{3i} =\\

\varepsilon_{123}\mathcal{A}_{11} + \varepsilon_{132}\mathcal{A}_{11} + \varepsilon_{231}\mathcal{A}_{22} + \varepsilon_{213}\mathcal{A}_{22} + \varepsilon_{312}\mathcal{A}_{33} + \varepsilon_{321}\mathcal{A}_{33} = \\

\mathcal{A}_{11} - \mathcal{A}_{11} + \mathcal{A}_{22} - \mathcal{A}_{22} + \mathcal{A}_{33} - \mathcal{A}_{33} = 0
$$
If this were correct I believe the pattern would hold for the other two terms, and the equation would equal zero...
 
Physics news on Phys.org
there is an easier way, of course, using indicial.
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{imk} + \mathcal{A}_{mj}\varepsilon_{ikm} = \mathcal{A}_{mk}\varepsilon_{ijk}\\
$$
multiplying all by $\varepsilon_{ijk}$ leads to kroniker delta rules, whereupon the expression can be quickly simplified...
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 1 ·
Replies
1
Views
29K
  • · Replies 4 ·
Replies
4
Views
14K