MHB Indicial notation - Levi-Cevita and Tensor

  • Thread starter Thread starter jasonmcc
  • Start date Start date
  • Tags Tags
    Notation Tensor
jasonmcc
Messages
10
Reaction score
0
Use indicial notation to show that:
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{imk} + \mathcal{A}_{mk}\varepsilon_{ijm} = \mathcal{A}_{mm}\varepsilon_{ijk}
$$
I'm probably missing an easier way, but my approach is to rearrange and expand on the terms:
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{mki} + \mathcal{A}_{mk}\varepsilon_{mij} = \mathcal{A}_{mm}\varepsilon_{ijk}
$$
Expanding the first term
$$
\mathcal{A}_{mi}\varepsilon_{mjk} = \varepsilon_{1jk}\mathcal{A}_{1i} + \varepsilon_{2jk}\mathcal{A}_{2i} + \varepsilon_{3jk}\mathcal{A}_{3i} =\\

\varepsilon_{123}\mathcal{A}_{11} + \varepsilon_{132}\mathcal{A}_{11} + \varepsilon_{231}\mathcal{A}_{22} + \varepsilon_{213}\mathcal{A}_{22} + \varepsilon_{312}\mathcal{A}_{33} + \varepsilon_{321}\mathcal{A}_{33} = \\

\mathcal{A}_{11} - \mathcal{A}_{11} + \mathcal{A}_{22} - \mathcal{A}_{22} + \mathcal{A}_{33} - \mathcal{A}_{33} = 0
$$
If this were correct I believe the pattern would hold for the other two terms, and the equation would equal zero...
 
Physics news on Phys.org
there is an easier way, of course, using indicial.
$$
\mathcal{A}_{mi}\varepsilon_{mjk} + \mathcal{A}_{mj}\varepsilon_{imk} + \mathcal{A}_{mj}\varepsilon_{ikm} = \mathcal{A}_{mk}\varepsilon_{ijk}\\
$$
multiplying all by $\varepsilon_{ijk}$ leads to kroniker delta rules, whereupon the expression can be quickly simplified...
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 1 ·
Replies
1
Views
29K
  • · Replies 4 ·
Replies
4
Views
14K