dwsmith said:
Using indicial notation, I am trying to show that $\mathbf{v}\cdot\mathbf{v} = a^2b^2\sin^2\theta$ where $ \mathbf{v} = \mathbf{a}\times\mathbf{b}$ and $\mathbf{v}_i\hat{\mathbf{e}}_i = a_j \hat{\mathbf{e}}_j\times b_j\hat{\mathbf{e}}_k = \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i$.
So
\begin{alignat}{3}
\mathbf{v}\cdot\mathbf{v} & = & \varepsilon_{ijk} a_jb_k\hat{\mathbf{e}}_i\cdot\varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\\
& = &
\end{alignat}
We have to have a kronecker delta since the only surviving terms are when the unit vectors that are dotted with themselves but that is all I have.
I see now. What we did with all that came before wasn't wrong, just inefficient. That sine function was killing me. However I finally found what was holding me up: \theta is obviously the angle between the vectors a and b. And that lead me to another approach.
\overrightarrow{v} \cdot \overrightarrow{v} = (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} \times \overrightarrow{b})
As it happens we can evaluate cross products by the following relation:
(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d})
Applying the same trick with the Levi-Civita and Kronicker deltas we can easily derive:
(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = ( \overrightarrow{a} \cdot \overrightarrow{c}) ( \overrightarrow{b} \cdot \overrightarrow{d}) - ( \overrightarrow{a} \cdot \overrightarrow{d}) ( \overrightarrow{b} \cdot \overrightarrow{c})<br />
Our problem is a special case of this where \overrightarrow{c} = \overrightarrow{a} and \overrightarrow{d} = \overrightarrow{b}
Recalling (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} \times \overrightarrow{b}) = ( \overrightarrow{a} \cdot \overrightarrow{a}) ( \overrightarrow{b} \cdot \overrightarrow{b}) - ( \overrightarrow{a} \cdot \overrightarrow{b}) ( \overrightarrow{b} \cdot \overrightarrow{a})
and recalling the dot product between vectors a and b:
= a^2 b^2 - (ab~cos(\theta)) (ab~cos(\theta)) = (ab)^2(1 - cos^2(\theta))
= a^2 b^2~sin^2(\theta)
I've never seen this problem (I think.) What do a and b represent or is this purely a Mathematical exercise?
-Dan