A Induced Metric for Riemann Hypersurface in Euclidean Signature

craigthone
Messages
57
Reaction score
1
We know in Lorentzian signature spacetime, in the case of timelike or spacelike hypersurfaces ##\Sigma## with
\begin{align}
n^\alpha n_\alpha=\epsilon=\pm1
\end{align}
where ##\epsilon=1## for timelike and ##-1## for spacelike. We can define a tensor ## h_{\alpha\beta}## on ##\Sigma## by
\begin{align}
h_{\alpha\beta}=g_{\alpha\beta}-\epsilon n_\alpha n_\beta
\end{align}
What is the corresponding relation for hypersuface in Euclidean signature manifold.
 
Last edited by a moderator:
Physics news on Phys.org
craigthone said:
We know in Lorentzian signature spacetime, in the case of timelike or spacelike hypersurfaces ##\Sigma## with
\begin{align}
n^\alpha n_\alpha=\epsilon=\pm1
\end{align}
where ##\epsilon=1## for timelike and ##-1## for spacelike. We can define a tensor ## h_{\alpha\beta}## on ##\Sigma## by
\begin{align}
h_{\alpha\beta}=g_{\alpha\beta}-\epsilon n_\alpha n_\beta
\end{align}
What is the corresponding relation for hypersuface in Euclidean signature manifold.

An example might help. If you have a metric
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ , the induced metric for a vector in the z direction, i.e. with components <0,0,1> would be
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So the same formula works, the induced metric ##h_{ab}= g_{ab} - n_a n_b=## works.

However, you can see that the sign convention for a spacelike vector we used is the opposite of the one you specified.

However, that's using a + sign convention for a Euclidean spacelike hypersurface, which is the opposite of the convention you chose for the Lorentzian matrix. I think using the same sign convention you used would be very confusing, but so is switching the sign convention between the two cases.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top