MHB Induction: Each square can be covered by L-stones

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Induction Square
Click For Summary
The discussion revolves around the problem of covering a square of side length $2^n$ with L-stones after removing one corner sub-square. Participants are exploring whether sketches from smaller cases, particularly case $n=2$, can be applied to case $n=3$. It is suggested that by filling the four sub-squares of case $n=3$ with the configuration from case $n=2$, the remaining three cells can be aligned to form an L-shape, allowing for another L-stone to fit. The conversation confirms that the arrangement of empty cells can indeed create the necessary L-shape for coverage. The participants express satisfaction with the reasoning and conclusions drawn.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A square with the side length $2^n$ length units (LU) is divided in sub-squares with the side length $1$. One of the sub-squares in the corners has been removed. All other sub-squares should now be covered completely and without overlapping with L-stones. An L-stone consists of three sub-squares that together form an L.

I want to draw the problem for the first three cases described above ($1 \leq n \leq 3$). Then I want to show the following using induction:

For all $n \in N$ the square with side length $2^n$ LU can be covered completely and without overlapping with L-stones, after one of the sub-squares in the corners has been removed.
For the first part:

View attachment 9354

Is the drawing correct? (Wondering)
 

Attachments

  • L_stones.png
    L_stones.png
    2.6 KB · Views: 103
Last edited by a moderator:
Physics news on Phys.org
Can we use the sketch of the case $n=2$ to get the one of the case $n=3$ ? (Wondering)

Is it maybe as follows?

The upper right sub-square is the one of case $n=2$. For the other sub-squares we have to fill them completely.

(Wondering)
 
mathmari said:
Can we use the sketch of the case $n=2$ to get the one of the case $n=3$ ? (Wondering)

Is it maybe as follows?

The upper right sub-square is the one of case $n=2$. For the other sub-squares we have to fill them completely.

Hey mathmari!

I think so yes.
Suppose we use the same case $n=2$ square to fill each of the 4 sub squares of the case $n=3$.
Then we have 3 cells left that we still have to fill don't we?
Can we align them so that we can put another L-square into it? (Wondering)
 
Klaas van Aarsen said:
I think so yes.
Suppose we use the same case $n=2$ square to fill each of the 4 sub squares of the case $n=3$.
Then we have 3 cells left that we still have to fill don't we?
Can we align them so that we can put another L-square into it? (Wondering)

To do that we have to make the empty cell in that corner so that the three empty cells make a L, or not? (Wondering)
 
mathmari said:
To do that we have to make the empty cell in that corner so that the three empty cells make a L, or not?

Yes. So the sub squares at left-top, left-bottom, and right-bottom would have their empty cell at the center.
Those empty cells have the shape of an L then, allowing for another piece. (Thinking)
 
Klaas van Aarsen said:
Yes. So the sub squares at left-top, left-bottom, and right-bottom would have their empty cell at the center.
Those empty cells have the shape of an L then, allowing for another piece. (Thinking)

I see! Thanks a lot! (Mmm)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K