Induction: Each square can be covered by L-stones

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Induction Square
Click For Summary
SUMMARY

The discussion centers on the mathematical induction proof for covering a square of side length $2^n$ with L-stones after removing one corner sub-square. Participants confirm that for $n=2$, the arrangement can be adapted to $n=3$ by utilizing the same configuration. The key conclusion is that the remaining empty cells can be arranged to form an L-shape, allowing for the placement of additional L-stones. This method is validated through collaborative reasoning and visual sketches.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with geometric shapes and tiling concepts
  • Basic knowledge of L-shaped figures in combinatorial geometry
  • Ability to visualize and manipulate spatial arrangements
NEXT STEPS
  • Study mathematical induction proofs in combinatorial geometry
  • Explore tiling problems involving L-shaped pieces
  • Learn about recursive strategies in geometric configurations
  • Investigate the properties of squares and sub-squares in tiling
USEFUL FOR

Mathematicians, educators, and students interested in combinatorial geometry and tiling problems, particularly those exploring induction proofs and spatial reasoning.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A square with the side length $2^n$ length units (LU) is divided in sub-squares with the side length $1$. One of the sub-squares in the corners has been removed. All other sub-squares should now be covered completely and without overlapping with L-stones. An L-stone consists of three sub-squares that together form an L.

I want to draw the problem for the first three cases described above ($1 \leq n \leq 3$). Then I want to show the following using induction:

For all $n \in N$ the square with side length $2^n$ LU can be covered completely and without overlapping with L-stones, after one of the sub-squares in the corners has been removed.
For the first part:

View attachment 9354

Is the drawing correct? (Wondering)
 

Attachments

  • L_stones.png
    L_stones.png
    2.6 KB · Views: 114
Last edited by a moderator:
Physics news on Phys.org
Can we use the sketch of the case $n=2$ to get the one of the case $n=3$ ? (Wondering)

Is it maybe as follows?

The upper right sub-square is the one of case $n=2$. For the other sub-squares we have to fill them completely.

(Wondering)
 
mathmari said:
Can we use the sketch of the case $n=2$ to get the one of the case $n=3$ ? (Wondering)

Is it maybe as follows?

The upper right sub-square is the one of case $n=2$. For the other sub-squares we have to fill them completely.

Hey mathmari!

I think so yes.
Suppose we use the same case $n=2$ square to fill each of the 4 sub squares of the case $n=3$.
Then we have 3 cells left that we still have to fill don't we?
Can we align them so that we can put another L-square into it? (Wondering)
 
Klaas van Aarsen said:
I think so yes.
Suppose we use the same case $n=2$ square to fill each of the 4 sub squares of the case $n=3$.
Then we have 3 cells left that we still have to fill don't we?
Can we align them so that we can put another L-square into it? (Wondering)

To do that we have to make the empty cell in that corner so that the three empty cells make a L, or not? (Wondering)
 
mathmari said:
To do that we have to make the empty cell in that corner so that the three empty cells make a L, or not?

Yes. So the sub squares at left-top, left-bottom, and right-bottom would have their empty cell at the center.
Those empty cells have the shape of an L then, allowing for another piece. (Thinking)
 
Klaas van Aarsen said:
Yes. So the sub squares at left-top, left-bottom, and right-bottom would have their empty cell at the center.
Those empty cells have the shape of an L then, allowing for another piece. (Thinking)

I see! Thanks a lot! (Mmm)
 

Similar threads

Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K