MHB Inequality Challenge: Prove $x^2+y^2+z^2\le xyz+2$ [0,1]

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.
 
Mathematics news on Phys.org
anemone said:
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.

we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$
 
Last edited:
kaliprasad said:
we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$

Good job kaliprasad!

My solution:
For all $x,\,y,\, z\in [0,1]$, we know $x^2 + y^2+ z^2\le x+y+z$ and if we can prove $x+y+z\le xyz + 2$, we're done. Note that from the conditions $x≤1$ and $y≤1, z≥0$, we can set up the inequality as follows:

$(1-x)(1-y)(z)≥0$, upon expanding we get $xyz≥z(x+y)-z$, adding a 2 on both sides yields $2+xyz≥z(x+y)-z+2$ and it's trivial in proving $z(x+y)-z+2≥x+y+z$ holds for $x,\,y,\, z\in [0,1]$ since $(x+y)(z-1)≥2(z-1)$ is true, so the result follows.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top