Inequality Challenge: Prove $x^2+y^2+z^2\le xyz+2$ [0,1]

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $x^2 + y^2 + z^2 \le xyz + 2$ holds true for real numbers $x, y, z$ constrained within the interval [0, 1]. The proof leverages algebraic manipulation and properties of real numbers within this range. Notably, the solution provided by user kaliprasad effectively demonstrates the validity of the inequality through systematic reasoning and verification of boundary conditions.

PREREQUISITES
  • Understanding of basic algebraic inequalities
  • Familiarity with real number properties
  • Knowledge of mathematical proof techniques
  • Experience with interval notation and constraints
NEXT STEPS
  • Study algebraic manipulation techniques for inequalities
  • Explore proofs involving real numbers in bounded intervals
  • Learn about symmetric inequalities and their applications
  • Investigate advanced topics in inequality theory
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in inequality proofs and real analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.
 
Mathematics news on Phys.org
anemone said:
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.

we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$
 
Last edited:
kaliprasad said:
we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$

Good job kaliprasad!

My solution:
For all $x,\,y,\, z\in [0,1]$, we know $x^2 + y^2+ z^2\le x+y+z$ and if we can prove $x+y+z\le xyz + 2$, we're done. Note that from the conditions $x≤1$ and $y≤1, z≥0$, we can set up the inequality as follows:

$(1-x)(1-y)(z)≥0$, upon expanding we get $xyz≥z(x+y)-z$, adding a 2 on both sides yields $2+xyz≥z(x+y)-z+2$ and it's trivial in proving $z(x+y)-z+2≥x+y+z$ holds for $x,\,y,\, z\in [0,1]$ since $(x+y)(z-1)≥2(z-1)$ is true, so the result follows.
 

Similar threads

Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K