MHB Inequality Challenge: Prove $x^2+y^2+z^2\le xyz+2$ [0,1]

Click For Summary
The inequality $x^2 + y^2 + z^2 \le xyz + 2$ is to be proven for real numbers $x, y, z$ within the interval [0,1]. Participants discuss various approaches and techniques to demonstrate the validity of this inequality. The conversation highlights the importance of considering the boundaries of the interval and potential cases for the values of $x$, $y$, and $z$. A successful proof would confirm the relationship holds true across the specified range. The challenge encourages mathematical exploration and problem-solving within the context of inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.
 
Mathematics news on Phys.org
anemone said:
Prove that $x^2 + y^2+ z^2\le xyz + 2$ where the reals $x,\,y,\, z\in [0,1]$.

we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$
 
Last edited:
kaliprasad said:
we have $x^2+y^2+z^2-xyz = x(x-yz) + y^2 + z^2$
keeping y and z fixed this increases when x increased
similarly keeping x and z fixed this increases when y increases and keeping x and y fixed this increases when z increases.
so this increases when x,y,z increase and maximum value is when x =y=z = 1( that is the range)
so $x^2+y^2+z^2 - xyz <= 1 +1 + 1 -1$
or $x^2+y^2+z^2 - xyz <= 2$
or $x^2+y^2+z^2 <= 2+xyz$

Good job kaliprasad!

My solution:
For all $x,\,y,\, z\in [0,1]$, we know $x^2 + y^2+ z^2\le x+y+z$ and if we can prove $x+y+z\le xyz + 2$, we're done. Note that from the conditions $x≤1$ and $y≤1, z≥0$, we can set up the inequality as follows:

$(1-x)(1-y)(z)≥0$, upon expanding we get $xyz≥z(x+y)-z$, adding a 2 on both sides yields $2+xyz≥z(x+y)-z+2$ and it's trivial in proving $z(x+y)-z+2≥x+y+z$ holds for $x,\,y,\, z\in [0,1]$ since $(x+y)(z-1)≥2(z-1)$ is true, so the result follows.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K