MHB Inequality Challenge: Prove $x^x \ge (x+1/2)^{x+1}$ for $x>0$

AI Thread Summary
The inequality \( x^x \ge \left( \frac{x+1}{2} \right)^{x+1} \) for \( x > 0 \) can be proven by analyzing the function \( f(x) = x^x - \left( \frac{x+1}{2} \right)^{x+1} \). Taking the logarithm and differentiating leads to the conclusion that \( \ln f(x) \) has a minimum at \( x = 1 \), where \( f(1) = 0 \), thus confirming \( f(x) \geq 0 \) for all \( x > 0 \). An alternative proof using Jensen's Inequality demonstrates that the convexity of \( f(x) = x \ln x \) supports the original inequality. Both methods validate that \( x^x \) is indeed greater than or equal to \( \left( \frac{x+1}{2} \right)^{x+1} \) for positive \( x \).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$x^x \ge \left( \frac{x+1}{2} \right)^{x+1}$$ for $x>0$.
 
Mathematics news on Phys.org
anemone said:
Prove $$x^x \ge \left( \frac{x+1}{2} \right)^{x+1}$$ for $x>0$.
[sp]We want to show that $f(x) = x^x - \bigl( \frac{x+1}{2} \bigr)^{x+1} \geqslant0$ for all $x>0$. Take logs, then differentiate: $$\ln f(x) = x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr),$$ $$\tfrac d{dx}(\ln f(x)) = \ln x + 1 - \ln\bigl( \tfrac{x+1}{2} \bigr) - 1 = \ln\bigl( \tfrac{2x}{x+1} \bigr).$$ But $\ln\bigl( \frac{2x}{x+1} \bigr)$ is zero when $x=1$, negative when $x<1$ and positive when $x>1$. Thus $\ln(f(x))$ has a minimum value when $x=1$, hence so does $f(x)$. But $f(1) = 0$. Therefore $f(x)\geqslant0$ for all $x>0$, as required.[/sp]
Edit. Oops! Anemone kindly points out a grotesque blunder in the way I presented that argument. Here is what I should have said.
[sp]Notice that $x^x \geqslant \bigl( \frac{x+1}{2} \bigr)^{x+1}$ is equivalent to $\dfrac{x^x}{\bigl( \frac{x+1}{2} \bigr)^{x+1}} \geqslant 1$. Take logs to see that this in turn is equivalent to $x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr) \geqslant0$. That can be proved as in my attempt above.[/sp]
 
Last edited:
Opalg said:
[sp]We want to show that $f(x) = x^x - \bigl( \frac{x+1}{2} \bigr)^{x+1} \geqslant0$ for all $x>0$. Take logs, then differentiate: $$\ln f(x) = x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr),$$ $$\tfrac d{dx}(\ln f(x)) = \ln x + 1 - \ln\bigl( \tfrac{x+1}{2} \bigr) - 1 = \ln\bigl( \tfrac{2x}{x+1} \bigr).$$ But $\ln\bigl( \frac{2x}{x+1} \bigr)$ is zero when $x=1$, negative when $x<1$ and positive when $x>1$. Thus $\ln(f(x))$ has a minimum value when $x=1$, hence so does $f(x)$. But $f(1) = 0$. Therefore $f(x)\geqslant0$ for all $x>0$, as required.[/sp]
Edit. Oops! Anemone kindly points out a grotesque blunder in the way I presented that argument. Here is what I should have said.
[sp]Notice that $x^x \geqslant \bigl( \frac{x+1}{2} \bigr)^{x+1}$ is equivalent to $\dfrac{x^x}{\bigl( \frac{x+1}{2} \bigr)^{x+1}} \geqslant 1$. Take logs to see that this in turn is equivalent to $x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr) \geqslant0$. That can be proved as in my attempt above.[/sp]

Hi Opalg,

Thanks for participating and I want to show you and those who read this thread another method (a method proposed by other) to prove this inequality using the Jensen Inequality...

Let $$f(x)=x \ln x$$

Differentiate the function of f of x twice we got $$f''(x)=\frac{1}{x} (>0) $$ for all $x$.

This means $f(x)$ is a convex function in the domain $x>0$ and Jensen inequality tells us if a function is convex, we have

$$f\left( \frac{\sum x_i}{n}\right) \le \frac{\sum f(x_i)}{n}$$

$$f\left( \frac{x+1}{2}\right) \le \frac{f(x)+f(1)}{2}$$

$$\left( \frac{x+1}{2}\right) \ln \left( \frac{x+1}{2}\right) \le \frac{x\ln x+1 \ln 1}{2}$$

$$\left( \frac{x+1}{2}\right) \ln \left( \frac{x+1}{2}\right) \le \frac{x\ln x}{2}$$

$$\cancel{2}\left( \frac{x+1}{\cancel{2}}\right) \ln \left( \frac{x+1}{2}\right) \le x\ln x$$

$$ \ln \left( \frac{x+1}{2}\right)^{x+1} \le \ln x^x$$

$$\therefore x^x \ge \left( \frac{x+1}{2}\right)^{x+1}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top