Inequality Challenge: Prove $x^x \ge (x+1/2)^{x+1}$ for $x>0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $$x^x \ge \left( \frac{x+1}{2} \right)^{x+1}$$ for $x>0$ is proven by analyzing the function $$f(x) = x^x - \left( \frac{x+1}{2} \right)^{x+1}$$. Taking the natural logarithm and differentiating yields $$\ln f(x) = x\ln x - (x+1)\ln\left(\frac{x+1}{2}\right)$$, with its derivative $$\frac{d}{dx}(\ln f(x)) = \ln\left(\frac{2x}{x+1}\right)$$. This derivative indicates that $f(x)$ has a minimum at $x=1$, where $f(1) = 0$, confirming that $f(x) \geq 0$ for all $x > 0$. An alternative proof using Jensen's Inequality also supports this conclusion.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with differentiation and critical points
  • Knowledge of convex functions and Jensen's Inequality
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of logarithmic functions in depth
  • Learn about convex functions and their applications in inequalities
  • Explore advanced differentiation techniques and their implications
  • Investigate other inequalities that can be proven using Jensen's Inequality
USEFUL FOR

Mathematicians, students studying calculus and inequalities, and anyone interested in advanced mathematical proofs and analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$x^x \ge \left( \frac{x+1}{2} \right)^{x+1}$$ for $x>0$.
 
Mathematics news on Phys.org
anemone said:
Prove $$x^x \ge \left( \frac{x+1}{2} \right)^{x+1}$$ for $x>0$.
[sp]We want to show that $f(x) = x^x - \bigl( \frac{x+1}{2} \bigr)^{x+1} \geqslant0$ for all $x>0$. Take logs, then differentiate: $$\ln f(x) = x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr),$$ $$\tfrac d{dx}(\ln f(x)) = \ln x + 1 - \ln\bigl( \tfrac{x+1}{2} \bigr) - 1 = \ln\bigl( \tfrac{2x}{x+1} \bigr).$$ But $\ln\bigl( \frac{2x}{x+1} \bigr)$ is zero when $x=1$, negative when $x<1$ and positive when $x>1$. Thus $\ln(f(x))$ has a minimum value when $x=1$, hence so does $f(x)$. But $f(1) = 0$. Therefore $f(x)\geqslant0$ for all $x>0$, as required.[/sp]
Edit. Oops! Anemone kindly points out a grotesque blunder in the way I presented that argument. Here is what I should have said.
[sp]Notice that $x^x \geqslant \bigl( \frac{x+1}{2} \bigr)^{x+1}$ is equivalent to $\dfrac{x^x}{\bigl( \frac{x+1}{2} \bigr)^{x+1}} \geqslant 1$. Take logs to see that this in turn is equivalent to $x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr) \geqslant0$. That can be proved as in my attempt above.[/sp]
 
Last edited:
Opalg said:
[sp]We want to show that $f(x) = x^x - \bigl( \frac{x+1}{2} \bigr)^{x+1} \geqslant0$ for all $x>0$. Take logs, then differentiate: $$\ln f(x) = x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr),$$ $$\tfrac d{dx}(\ln f(x)) = \ln x + 1 - \ln\bigl( \tfrac{x+1}{2} \bigr) - 1 = \ln\bigl( \tfrac{2x}{x+1} \bigr).$$ But $\ln\bigl( \frac{2x}{x+1} \bigr)$ is zero when $x=1$, negative when $x<1$ and positive when $x>1$. Thus $\ln(f(x))$ has a minimum value when $x=1$, hence so does $f(x)$. But $f(1) = 0$. Therefore $f(x)\geqslant0$ for all $x>0$, as required.[/sp]
Edit. Oops! Anemone kindly points out a grotesque blunder in the way I presented that argument. Here is what I should have said.
[sp]Notice that $x^x \geqslant \bigl( \frac{x+1}{2} \bigr)^{x+1}$ is equivalent to $\dfrac{x^x}{\bigl( \frac{x+1}{2} \bigr)^{x+1}} \geqslant 1$. Take logs to see that this in turn is equivalent to $x\ln x - (x+1)\ln\bigl( \tfrac{x+1}{2} \bigr) \geqslant0$. That can be proved as in my attempt above.[/sp]

Hi Opalg,

Thanks for participating and I want to show you and those who read this thread another method (a method proposed by other) to prove this inequality using the Jensen Inequality...

Let $$f(x)=x \ln x$$

Differentiate the function of f of x twice we got $$f''(x)=\frac{1}{x} (>0) $$ for all $x$.

This means $f(x)$ is a convex function in the domain $x>0$ and Jensen inequality tells us if a function is convex, we have

$$f\left( \frac{\sum x_i}{n}\right) \le \frac{\sum f(x_i)}{n}$$

$$f\left( \frac{x+1}{2}\right) \le \frac{f(x)+f(1)}{2}$$

$$\left( \frac{x+1}{2}\right) \ln \left( \frac{x+1}{2}\right) \le \frac{x\ln x+1 \ln 1}{2}$$

$$\left( \frac{x+1}{2}\right) \ln \left( \frac{x+1}{2}\right) \le \frac{x\ln x}{2}$$

$$\cancel{2}\left( \frac{x+1}{\cancel{2}}\right) \ln \left( \frac{x+1}{2}\right) \le x\ln x$$

$$ \ln \left( \frac{x+1}{2}\right)^{x+1} \le \ln x^x$$

$$\therefore x^x \ge \left( \frac{x+1}{2}\right)^{x+1}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K