MHB Inequality Challenge V: Prove $(a+b)^{a+b} \le (2a)^a(2b)^b$

Click For Summary
The inequality challenge requires proving that for any real numbers \(a\) and \(b\) in the interval \((0,1)\), the expression \((a+b)^{a+b} \le (2a)^a(2b)^b\) holds. By dividing both sides by \(2^{a+b}\), the goal shifts to demonstrating that \(\left(\frac{a+b}{2}\right)^{a+b} \leq a^a b^b\). Taking logarithms leads to showing that \(\left(\frac{1}{2}(a+b)\right) \ln\left(\frac{1}{2}(a+b)\right) \leq \frac{1}{2}(a \ln a + b \ln b)\), which follows from the concavity of the function \(f(x) = x \ln x\). The proof confirms the result for all positive \(a\) and \(b\), with equality occurring only when \(a = b\). The discussion highlights a blend of algebraic and analytic approaches to the problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for any real numbers $a$ and $b$ in $(0,\,1)$, that $(a+b)^{a+b}\le (2a)^a(2b)^b$.
 
Mathematics news on Phys.org
You probably want an algebraic proof of this, but as an analyst I naturally think in terms of an analytic proof.
[sp]Dividing both sides by $2^{a+b}$, we need to show that $\Bigl(\dfrac{a+b}2\Bigr)^{a+b} \leqslant a^ab^b$. Then taking the square root of both sides, we need to show that $\bigl(\frac12(a+b)\bigr)^{(a+b)/2} \leqslant \sqrt{a^ab^b}.$ Taking logs of both sides, we need to show that $\bigl(\frac12(a+b)\bigr) \ln\bigl(\frac12(a+b)\bigr) \leqslant \frac12(a\ln a + b\ln b).$ But that is an immediate consequence of the fact the function $f(x) = x\ln x$ is concave, so that $f\bigl(\frac12(a+b)\bigr) \leqslant \frac12\bigl(f(a) + f(b)\bigr).$

To check that $f$ is concave, notice that $f'(x) = \ln x + 1$, $f''(x) = 1/x >0$ for all $x>0$.

This proof shows that the result holds for all positive $a$ and $b$, not just those in the interval $(0,1)$, and that equality holds only when $a=b$.[/sp]
 
Thanks, Opalg for your neat solution in tackling this challenge problem. I'll post the solution (half-algebraic half-analytic) sometime later!:)
 
If we write $a=t(a+b)$ and $b=(1-t)(a+b)$ so that $0<t<1$ and taking both sides of the inequality to the power $\dfrac{1}{a+b}$ and dividing by $a+b$, the inequality is equivalent to

$1\le(2t)^t(2(1-t))^{1-t}$

$\log \dfrac{1}{2}\le t\log t+(1-t)\log(1-t)$

Let $f(t)$ denotes the function on the right then we have $f'(t)=\log t-log(1-t)$, which is negative if $0<t<\dfrac{1}{2}$, equals to 0 at $t=\dfrac{1}{2}$, and positive if $\dfrac{1}{2}<t<1$.

Thus $f(t)$ is minimal at $t=\dfrac{1}{2}$, and since $f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right) \log \left( \dfrac{1}{2} \right)+\left( 1-\dfrac{1}{2} \right)\log \left( 1-\dfrac{1}{2} \right)=\log \left(\dfrac{1}{2} \right)$ and hence we proved for the desired inequality.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K