Inequality Challenge V: Prove $(a+b)^{a+b} \le (2a)^a(2b)^b$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $(a+b)^{a+b} \le (2a)^a(2b)^b$ is proven for real numbers $a$ and $b$ in the interval $(0, 1)$. By dividing both sides by $2^{a+b}$, the proof reduces to showing that $\Bigl(\frac{a+b}{2}\Bigr)^{a+b} \leq a^a b^b$. Utilizing logarithmic properties and the concavity of the function $f(x) = x \ln x$, it is established that the inequality holds for all positive $a$ and $b$, with equality occurring only when $a = b$. The discussion highlights the effectiveness of both algebraic and analytic approaches in proving inequalities.

PREREQUISITES
  • Understanding of logarithmic functions and properties
  • Familiarity with concave functions and their implications
  • Basic knowledge of inequalities in real analysis
  • Proficiency in algebraic manipulation and proof techniques
NEXT STEPS
  • Study the properties of concave functions, particularly the implications of Jensen's inequality
  • Explore advanced topics in real analysis, focusing on inequalities and their proofs
  • Learn about the applications of logarithmic functions in inequality proofs
  • Investigate other proofs of similar inequalities using different mathematical approaches
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in advanced inequality proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for any real numbers $a$ and $b$ in $(0,\,1)$, that $(a+b)^{a+b}\le (2a)^a(2b)^b$.
 
Mathematics news on Phys.org
You probably want an algebraic proof of this, but as an analyst I naturally think in terms of an analytic proof.
[sp]Dividing both sides by $2^{a+b}$, we need to show that $\Bigl(\dfrac{a+b}2\Bigr)^{a+b} \leqslant a^ab^b$. Then taking the square root of both sides, we need to show that $\bigl(\frac12(a+b)\bigr)^{(a+b)/2} \leqslant \sqrt{a^ab^b}.$ Taking logs of both sides, we need to show that $\bigl(\frac12(a+b)\bigr) \ln\bigl(\frac12(a+b)\bigr) \leqslant \frac12(a\ln a + b\ln b).$ But that is an immediate consequence of the fact the function $f(x) = x\ln x$ is concave, so that $f\bigl(\frac12(a+b)\bigr) \leqslant \frac12\bigl(f(a) + f(b)\bigr).$

To check that $f$ is concave, notice that $f'(x) = \ln x + 1$, $f''(x) = 1/x >0$ for all $x>0$.

This proof shows that the result holds for all positive $a$ and $b$, not just those in the interval $(0,1)$, and that equality holds only when $a=b$.[/sp]
 
Thanks, Opalg for your neat solution in tackling this challenge problem. I'll post the solution (half-algebraic half-analytic) sometime later!:)
 
If we write $a=t(a+b)$ and $b=(1-t)(a+b)$ so that $0<t<1$ and taking both sides of the inequality to the power $\dfrac{1}{a+b}$ and dividing by $a+b$, the inequality is equivalent to

$1\le(2t)^t(2(1-t))^{1-t}$

$\log \dfrac{1}{2}\le t\log t+(1-t)\log(1-t)$

Let $f(t)$ denotes the function on the right then we have $f'(t)=\log t-log(1-t)$, which is negative if $0<t<\dfrac{1}{2}$, equals to 0 at $t=\dfrac{1}{2}$, and positive if $\dfrac{1}{2}<t<1$.

Thus $f(t)$ is minimal at $t=\dfrac{1}{2}$, and since $f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right) \log \left( \dfrac{1}{2} \right)+\left( 1-\dfrac{1}{2} \right)\log \left( 1-\dfrac{1}{2} \right)=\log \left(\dfrac{1}{2} \right)$ and hence we proved for the desired inequality.
 

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K