MHB Inequality Challenge X: Prove $\ge 3l-4m+n$

AI Thread Summary
The inequality challenge involves proving that for real numbers l, m, and n with l ≥ m ≥ n > 0, the expression (l^2 - m^2)/n + (n^2 - m^2)/l + (l^2 - n^2)/m is greater than or equal to 3l - 4m + n. The problem has remained unanswered for several months, indicating a lack of solutions or insights from the community. A user expressed gratitude for a contribution that helped address the unresolved issue. The discussion highlights the collaborative nature of problem-solving in mathematical forums. Engaging with such challenges can enhance understanding and foster community support in tackling complex inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
There are real numbers $l,\,m,\,n$ such that $l\ge m\ge n >0$.

Prove that $\dfrac{l^2-m^2}{n}+\dfrac{n^2-m^2}{l}+\dfrac{l^2-n^2}{m}\ge 3l-4m+n$.
 
Mathematics news on Phys.org
this is not answered since months. here is my solution

as $l \ge m \ge n \gt 0$

we get $(l +m) \ge 2n$
or $\dfrac{l+m}{n} \ge 2$
or $\dfrac{l^2-m^2}{n} \ge 2(l-m) \cdots (1) $further
$(m+n ) \le 2l$
or $\dfrac{m+n }{l} \le 2$
or $\dfrac{m^2-n^2}{l} \le 2(m-n) $
or $\dfrac{n^2-m^2}{l} \ge 2(n-m) \cdots (2) $

also
$(l+n ) \ge m$
or $\dfrac{l+n }{m} \ge 1$
or $\dfrac{l^2-n^2}{m} \ge l-n \cdots (3)$adding (1), (2), (3) we get

$\dfrac{l^2-m^2}{n}+ \dfrac{n^2-m^2}{l}+\dfrac{l^2-n^2}{m} \ge 3l - 4m +n$
 
Last edited:
kaliprasad said:
this is not answered since months. here is my solution

as $l \ge m \ge n \gt 0$

we get $(l +m) \ge 2n$
or $\dfrac{l+m}{n} \ge 2$
or $\dfrac{l^2-m^2}{n} \ge 2(l-m) \cdots (1) $further
$(m+n ) \le 2l$
or $\dfrac{m+n }{l} \le 2$
or $\dfrac{m^2-n^2}{l} \le 2(m-n) $
or $\dfrac{n^2-m^2}{l} \ge 2(n-m) \cdots (2) $

also
$(l+n ) \ge m$
or $\dfrac{l+n }{m} \ge 1$
or $\dfrac{l^2-n^2}{m} \ge l-n \cdots (3)$adding (1), (2), (3) we get

$\dfrac{l^2-m^2}{n}+ \dfrac{n^2-m^2}{l}+\dfrac{l^2-n^2}{m} \ge 3l - 4m +n$

Well done, kaliprasad! I didn't realize I had one problem left unanswered:o...fortunately you helped me to finish the unfinished business here...thanks, my friend!:cool:
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top