Inequality Proof: $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\cdots+\dfrac{1}{k+4029}-\dfrac{1}{k+4030}$ is established for $k>0$ as a special case of the general inequality $\frac n{(k+1)(k+2n)} < \frac{1}{k+1}-\dfrac{1}{k+2}+\ldots-\dfrac{1}{k+2n}$. The proof utilizes mathematical induction, confirming that the base case holds for $n=1$ and the inductive step is valid for $n \geq 2$. The final inequality is shown to be true through polynomial manipulation, demonstrating the strict inequality required for the proof.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with inequalities and their properties
  • Knowledge of polynomial expressions and manipulation
  • Basic calculus concepts related to limits and series
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore advanced inequality techniques, such as Cauchy-Schwarz and Jensen's inequality
  • Learn about polynomial inequalities and their applications in proofs
  • Investigate series convergence and divergence, particularly harmonic series
USEFUL FOR

Mathematicians, educators, and students interested in advanced inequality proofs, particularly those utilizing induction methods. This discussion is also beneficial for anyone studying mathematical analysis or number theory.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $k>0$. Show that $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\cdots+\dfrac{1}{k+4029}-\dfrac{1}{k+4030}$.
 
Mathematics news on Phys.org
anemone said:
Suppose $k>0$. Show that $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\cdots+\dfrac{1}{k+4029}-\dfrac{1}{k+4030}$.
[sp]This is a special case ($n=2015$) of the inequality $$\frac n{(k+1)(k+2n)} < \frac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\ldots+\dfrac{1}{k+2n-1}-\dfrac{1}{k+2n},$$ which can be proved by induction for $n\geqslant2$.

In fact, the result almost holds for $n=1$ too, except that in this case the inequality becomes an equality, because $\dfrac1{(k+1)(k+2)} = \dfrac1{k+1} - \dfrac1{k+2}.$ So we can take this as the base case, provided that the proof of the inductive step involves a strict inequality. That will establish that the strict inequality occurs when $n=2$.

So suppose that the inequality holds for some value of $n$. Then $$\frac n{(k+1)(k+2n)} + \dfrac1{k+2n+1} - \dfrac1{k+2n+2} < \frac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\ldots+\dfrac{1}{k+2n+1}-\dfrac{1}{k+2n+2}.$$ Since $\dfrac1{k+2n+1} - \dfrac1{k+2n+2} = \dfrac1{(k+2n+1)(k+2n+2)},$ the left side of that inequality is equal to $\dfrac n{(k+1)(k+2n)} + \dfrac1{(k+2n+1)(k+2n+2)}.$

To establish the inductive step, we therefore need to show that $$\dfrac{n+1}{(k+1)(k+2n+2)} < \frac n{(k+1)(k+2n)} + \dfrac1{(k+2n+1)(k+2n+2)}.$$ Multiplying out the fractions, this is equivalent to showing that $$(n+1)(k+2n)(k+2n+1) < n(k+2n+1)(k+2n+2) + (k+1)(k+2n).$$ Now write both sides as polynomials in $k$ to see that this is equivalent to showing that $$(n+1)k^2 + (4n^2 + 5n + 1)k + 2n < (n+1)k^2 + (4n^2 + 5n + 1)k + 4n.$$ But since $4n>2n$, that last inequality obviously holds. That (somewhat inelegantly) establishes the inductive step and proves the result.[/sp]
 
Thanks for participating in this challenge, Opalg!

The solution that I have also prove the inequality with the induction method!(Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K