MHB Inequality Proof: $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $k>0$. Show that $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\cdots+\dfrac{1}{k+4029}-\dfrac{1}{k+4030}$.
 
Mathematics news on Phys.org
anemone said:
Suppose $k>0$. Show that $\dfrac{2015}{(k+1)(k+4030)}<\dfrac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\cdots+\dfrac{1}{k+4029}-\dfrac{1}{k+4030}$.
[sp]This is a special case ($n=2015$) of the inequality $$\frac n{(k+1)(k+2n)} < \frac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\ldots+\dfrac{1}{k+2n-1}-\dfrac{1}{k+2n},$$ which can be proved by induction for $n\geqslant2$.

In fact, the result almost holds for $n=1$ too, except that in this case the inequality becomes an equality, because $\dfrac1{(k+1)(k+2)} = \dfrac1{k+1} - \dfrac1{k+2}.$ So we can take this as the base case, provided that the proof of the inductive step involves a strict inequality. That will establish that the strict inequality occurs when $n=2$.

So suppose that the inequality holds for some value of $n$. Then $$\frac n{(k+1)(k+2n)} + \dfrac1{k+2n+1} - \dfrac1{k+2n+2} < \frac{1}{k+1}-\dfrac{1}{k+2}+\dfrac{1}{k+3}-\dfrac{1}{k+4}+\ldots+\dfrac{1}{k+2n+1}-\dfrac{1}{k+2n+2}.$$ Since $\dfrac1{k+2n+1} - \dfrac1{k+2n+2} = \dfrac1{(k+2n+1)(k+2n+2)},$ the left side of that inequality is equal to $\dfrac n{(k+1)(k+2n)} + \dfrac1{(k+2n+1)(k+2n+2)}.$

To establish the inductive step, we therefore need to show that $$\dfrac{n+1}{(k+1)(k+2n+2)} < \frac n{(k+1)(k+2n)} + \dfrac1{(k+2n+1)(k+2n+2)}.$$ Multiplying out the fractions, this is equivalent to showing that $$(n+1)(k+2n)(k+2n+1) < n(k+2n+1)(k+2n+2) + (k+1)(k+2n).$$ Now write both sides as polynomials in $k$ to see that this is equivalent to showing that $$(n+1)k^2 + (4n^2 + 5n + 1)k + 2n < (n+1)k^2 + (4n^2 + 5n + 1)k + 4n.$$ But since $4n>2n$, that last inequality obviously holds. That (somewhat inelegantly) establishes the inductive step and proves the result.[/sp]
 
Thanks for participating in this challenge, Opalg!

The solution that I have also prove the inequality with the induction method!(Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top