MHB Inequality proof - for determining convex set

Click For Summary
The discussion revolves around proving that the set defined by the inequality \( \Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \} \) is convex. The key step involves showing that for any two points \( \textbf{x} \) and \( \textbf{y} \) in the set, the convex combination \( \theta \textbf{x} + (1-\theta) \textbf{y} \) also satisfies the inequality. Participants suggest starting from the inequalities \( x_2 \geq x_1^2 - 6 \) and \( y_2 \geq y_1^2 - 6 \) to establish that the left-hand side of the convex combination is greater than or equal to the right-hand side. The proof ultimately simplifies to showing that a certain quadratic expression is non-negative, confirming the convexity of the set. The discussion concludes with the successful simplification of the expression, affirming the convexity condition.
numbersense
Messages
4
Reaction score
0
I am stuck at the inequality proof of this convext set problem.

$\Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \}$

The set should be a convex set, meaning for $\textbf{x}, \textbf{y} \in \mathbb{R}^2$ and $\theta \in [0,1]$, $\theta \textbf{x} + (1-\theta)\textbf{y}$ also belong to $\Omega$.

How can I show that $(\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \leq 6$?

I am stuck after expanding the LHS.
\begin{align*}
& (\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \\
=& \theta^2 x_1^2 + 2\theta(1 - \theta)x_1 y_1 + (1 - \theta)^2 y_1^2 - \theta x_2 - (1 - \theta) y_2
\end{align*}

Any hints or pointers are welcome. Thanks in advance.
 
Physics news on Phys.org
numbersense said:
I am stuck at the inequality proof of this convext set problem.

$\Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \}$

The set should be a convex set, meaning for $\textbf{x}, \textbf{y} \in \mathbb{R}^2$ and $\theta \in [0,1]$, $\theta \textbf{x} + (1-\theta)\textbf{y}$ also belong to $\Omega$.

How can I show that $(\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \leq 6$?

I am stuck after expanding the LHS.
\begin{align*}
& (\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \\
=& \theta^2 x_1^2 + 2\theta(1 - \theta)x_1 y_1 + (1 - \theta)^2 y_1^2 - \theta x_2 - (1 - \theta) y_2
\end{align*}

Any hints or pointers are welcome. Thanks in advance.

Welcome to MHB, numbersense! :)

Graphically, your problem is that any weighted mean of 2 points above the parabola $x^2-6$ is also above that parabola.
Something like this:

View attachment 721

Summarized, your problem is that:
$$\text{Given} \\
\qquad x_2 \ge x_1^2 - 6 \qquad (1) \\
\qquad y_2 \ge y_1^2 - 6 \qquad (2) \\
\text{Proof that: } \theta x_2 + (1-\theta)y_2 \ge (\theta x_1 + (1-\theta)y_1)^2 - 6 \qquad (3)$$

Starting with the LHS of (3), we get with (1) and (2) that:
$$\theta x_2 + (1-\theta)y_2 \ge \theta (x_1^2 - 6) + (1-\theta)(y_1^2 - 6) = \theta x_1^2 + (1-\theta)y_1^2 - 6 \qquad (4)$$

So we're left to proof that:
$$(\theta x_1^2 + (1-\theta)y_1^2) - (\theta x_1 + (1-\theta)y_1)^2 \overset{?}{\ge} 0 \qquad (5)$$

Can you simplify that?
 

Attachments

  • problem-parabola.png
    problem-parabola.png
    1.6 KB · Views: 89
Thank you I like Serena! I think I managed to simplify that.

\begin{align*}
& \theta x_1^2 + (1 - \theta) y_1^2 - (\theta x_1 + (1-\theta) y_1)^2 \\
=& \theta x_1^2 + (1-\theta)y_1^2 - ( \theta^2 x_1^2 + 2 (\theta - \theta^2) x_1 y_1 + (1-2\theta + \theta^2) y_1^2)\\
=& (\theta - \theta^2) x_1^2 - 2(\theta - \theta^2)x_1 y_1 + (\theta - \theta^2) y_1^2\\
=& \left((\theta - \theta^2)^\frac{1}{2} x_1 - (\theta - \theta^2)^\frac{1}{2} y_1\right)^2\\
\geq & 0
\end{align*}

$\theta - \theta^2 \geq 0$ as $\theta \in [0,1]$.
 
numbersense said:
Thank you I like Serena! I think I managed to simplify that.

\begin{align*}
& \theta x_1^2 + (1 - \theta) y_1^2 - (\theta x_1 + (1-\theta) y_1)^2 \\
=& \theta x_1^2 + (1-\theta)y_1^2 - ( \theta^2 x_1^2 + 2 (\theta - \theta^2) x_1 y_1 + (1-2\theta + \theta^2) y_1^2)\\
=& (\theta - \theta^2) x_1^2 - 2(\theta - \theta^2)x_1 y_1 + (\theta - \theta^2) y_1^2\\
=& \left((\theta - \theta^2)^\frac{1}{2} x_1 - (\theta - \theta^2)^\frac{1}{2} y_1\right)^2\\
\geq & 0
\end{align*}

$\theta - \theta^2 \geq 0$ as $\theta \in [0,1]$.

Yep! ;)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K