Inequality proof - for determining convex set

Click For Summary
SUMMARY

The discussion centers on proving that the set $\Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \}$ is convex. Participants demonstrate that if $\textbf{x}, \textbf{y} \in \mathbb{R}^2$ and $\theta \in [0,1]$, then the expression $(\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \leq 6$ holds true. The proof involves showing that the left-hand side simplifies to a non-negative quantity, confirming the convexity of the set.

PREREQUISITES
  • Understanding of convex sets in $\mathbb{R}^2$
  • Familiarity with inequalities and algebraic manipulation
  • Knowledge of weighted averages and their properties
  • Basic proficiency in mathematical proofs and logic
NEXT STEPS
  • Study the properties of convex sets in $\mathbb{R}^n$
  • Learn about the Cauchy-Schwarz inequality and its applications
  • Explore techniques for proving inequalities in multivariable calculus
  • Investigate the geometric interpretation of convex combinations
USEFUL FOR

Mathematicians, students studying convex analysis, and anyone interested in understanding the properties of convex sets and inequalities in higher dimensions.

numbersense
Messages
4
Reaction score
0
I am stuck at the inequality proof of this convext set problem.

$\Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \}$

The set should be a convex set, meaning for $\textbf{x}, \textbf{y} \in \mathbb{R}^2$ and $\theta \in [0,1]$, $\theta \textbf{x} + (1-\theta)\textbf{y}$ also belong to $\Omega$.

How can I show that $(\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \leq 6$?

I am stuck after expanding the LHS.
\begin{align*}
& (\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \\
=& \theta^2 x_1^2 + 2\theta(1 - \theta)x_1 y_1 + (1 - \theta)^2 y_1^2 - \theta x_2 - (1 - \theta) y_2
\end{align*}

Any hints or pointers are welcome. Thanks in advance.
 
Physics news on Phys.org
numbersense said:
I am stuck at the inequality proof of this convext set problem.

$\Omega = \{ \textbf{x} \in \mathbb{R}^2 | x_1^2 - x_2 \leq 6 \}$

The set should be a convex set, meaning for $\textbf{x}, \textbf{y} \in \mathbb{R}^2$ and $\theta \in [0,1]$, $\theta \textbf{x} + (1-\theta)\textbf{y}$ also belong to $\Omega$.

How can I show that $(\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \leq 6$?

I am stuck after expanding the LHS.
\begin{align*}
& (\theta x_1 + (1-\theta)y_1)^2 - (\theta x_2 + (1-\theta)y_2) \\
=& \theta^2 x_1^2 + 2\theta(1 - \theta)x_1 y_1 + (1 - \theta)^2 y_1^2 - \theta x_2 - (1 - \theta) y_2
\end{align*}

Any hints or pointers are welcome. Thanks in advance.

Welcome to MHB, numbersense! :)

Graphically, your problem is that any weighted mean of 2 points above the parabola $x^2-6$ is also above that parabola.
Something like this:

View attachment 721

Summarized, your problem is that:
$$\text{Given} \\
\qquad x_2 \ge x_1^2 - 6 \qquad (1) \\
\qquad y_2 \ge y_1^2 - 6 \qquad (2) \\
\text{Proof that: } \theta x_2 + (1-\theta)y_2 \ge (\theta x_1 + (1-\theta)y_1)^2 - 6 \qquad (3)$$

Starting with the LHS of (3), we get with (1) and (2) that:
$$\theta x_2 + (1-\theta)y_2 \ge \theta (x_1^2 - 6) + (1-\theta)(y_1^2 - 6) = \theta x_1^2 + (1-\theta)y_1^2 - 6 \qquad (4)$$

So we're left to proof that:
$$(\theta x_1^2 + (1-\theta)y_1^2) - (\theta x_1 + (1-\theta)y_1)^2 \overset{?}{\ge} 0 \qquad (5)$$

Can you simplify that?
 

Attachments

  • problem-parabola.png
    problem-parabola.png
    1.6 KB · Views: 101
Thank you I like Serena! I think I managed to simplify that.

\begin{align*}
& \theta x_1^2 + (1 - \theta) y_1^2 - (\theta x_1 + (1-\theta) y_1)^2 \\
=& \theta x_1^2 + (1-\theta)y_1^2 - ( \theta^2 x_1^2 + 2 (\theta - \theta^2) x_1 y_1 + (1-2\theta + \theta^2) y_1^2)\\
=& (\theta - \theta^2) x_1^2 - 2(\theta - \theta^2)x_1 y_1 + (\theta - \theta^2) y_1^2\\
=& \left((\theta - \theta^2)^\frac{1}{2} x_1 - (\theta - \theta^2)^\frac{1}{2} y_1\right)^2\\
\geq & 0
\end{align*}

$\theta - \theta^2 \geq 0$ as $\theta \in [0,1]$.
 
numbersense said:
Thank you I like Serena! I think I managed to simplify that.

\begin{align*}
& \theta x_1^2 + (1 - \theta) y_1^2 - (\theta x_1 + (1-\theta) y_1)^2 \\
=& \theta x_1^2 + (1-\theta)y_1^2 - ( \theta^2 x_1^2 + 2 (\theta - \theta^2) x_1 y_1 + (1-2\theta + \theta^2) y_1^2)\\
=& (\theta - \theta^2) x_1^2 - 2(\theta - \theta^2)x_1 y_1 + (\theta - \theta^2) y_1^2\\
=& \left((\theta - \theta^2)^\frac{1}{2} x_1 - (\theta - \theta^2)^\frac{1}{2} y_1\right)^2\\
\geq & 0
\end{align*}

$\theta - \theta^2 \geq 0$ as $\theta \in [0,1]$.

Yep! ;)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K