- #1
Lambda96
- 189
- 65
- Homework Statement
- For which ##\lambda## does ##\Phi## have a norm in ##\mathbb{R^3}##
- Relevant Equations
- none
Hi,
The task is as follows
In order for it to be a norm, the three properties must be fulfilled.
1. Positive definiteness
2. Absolute homogeneity
3. Triangle inequality
##\textbf{Positive definiteness}##
Since all three elements are given in absolute value, the result of ##\max{}## will always be positive, no matter what value the ##\lambda## will have
##\textbf{Absolute homogeneity}##
##\max\{|s \cdot x|,|s \cdot y|^{\lambda}, |s \cdot z|\} = |s| \cdot \max\{|x|,|y|^{\lambda},|z|\}##
##\textbf{Triangle inequality}##
##|\max\{|x_1|,|y_1|^{\lambda},|z_1|\} +\max\{|x_2|,|y_2|^{\lambda},|z_2|\}| \leq |\max\{|x_1|,|y_1|^{\lambda},|z_1|\}| + |\max\{|x_2|,|y_2|^{\lambda},|z_2|\}|##
Now, I'm not sure, but ##\lambda## can now take on all values without the triangle inequality not being fulfilled. At least I can't think of an example where the triangle inequality is not fulfilled.
The task is as follows
In order for it to be a norm, the three properties must be fulfilled.
1. Positive definiteness
2. Absolute homogeneity
3. Triangle inequality
##\textbf{Positive definiteness}##
Since all three elements are given in absolute value, the result of ##\max{}## will always be positive, no matter what value the ##\lambda## will have
##\textbf{Absolute homogeneity}##
##\max\{|s \cdot x|,|s \cdot y|^{\lambda}, |s \cdot z|\} = |s| \cdot \max\{|x|,|y|^{\lambda},|z|\}##
##\textbf{Triangle inequality}##
##|\max\{|x_1|,|y_1|^{\lambda},|z_1|\} +\max\{|x_2|,|y_2|^{\lambda},|z_2|\}| \leq |\max\{|x_1|,|y_1|^{\lambda},|z_1|\}| + |\max\{|x_2|,|y_2|^{\lambda},|z_2|\}|##
Now, I'm not sure, but ##\lambda## can now take on all values without the triangle inequality not being fulfilled. At least I can't think of an example where the triangle inequality is not fulfilled.