Information travel faster than c ?

  • Context: Graduate 
  • Thread starter Thread starter luxiaolei
  • Start date Start date
  • Tags Tags
    Information Travel
Click For Summary
SUMMARY

The discussion centers on the concept of information travel in quantum mechanics, specifically regarding a particle in a 2-D square well potential and its wavefunction. Participants assert that the wavefunction represents the particle's state and is non-local, meaning it is spread out over the potential well before measurement. The conversation also explores the implications of moving large objects, like stars, and whether their wavefunctions can instantaneously affect one another, concluding that information cannot travel faster than light, as established by relativity.

PREREQUISITES
  • Understanding of quantum mechanics and wavefunctions
  • Familiarity with the concept of non-locality in quantum systems
  • Basic knowledge of special relativity and information transfer
  • Concept of potential wells in quantum physics
NEXT STEPS
  • Study the implications of wavefunction collapse in quantum mechanics
  • Research the concept of non-locality and its experimental evidence
  • Explore the relationship between quantum mechanics and relativity
  • Learn about potential wells and their applications in quantum systems
USEFUL FOR

Students and researchers in physics, particularly those focused on quantum mechanics, relativity, and the foundational principles of wavefunctions and information transfer in quantum systems.

luxiaolei
Messages
70
Reaction score
0
Hi,all, my problem is:

Consider a 2-D square well potential, say length 2L, and when I put one particle into this well,

Does this particles IMMEDIATELY know what wavefunction it should have?

I am trying to consider, once the particle enter the (middle of the)well, the information takes

at least t=L/c to reach that particle, to let the particle knows where it is in the well, and hence

what wavefunction should it have would be known by that particle.

Am I right?

Thanks in advance
 
Physics news on Phys.org
This question is a bit puzzling, because the wavefunction IS the "particle", at least with the "standard" QM interpretation. That is why we say that the particle is spread out over all distance (non-local) before its position is being measured.

Zz.
 
ZapperZ said:
This question is a bit puzzling, because the wavefunction IS the "particle", at least with the "standard" QM interpretation. That is why we say that the particle is spread out over all distance (non-local) before its position is being measured.

Zz.

Thanks for your answer, but what if say the length of the well is very very large, say the 10 light years? Theoretically, that particle would also spread out of this large potential well same as the small one? In these two cases, will it have no different in terms of thinking infomation travelling?
 
luxiaolei said:
Thanks for your answer, but what if say the length of the well is very very large, say the 10 light years? Theoretically, that particle would also spread out of this large potential well same as the small one? In these two cases, will it have no different in terms of thinking infomation travelling?

The length makes no difference. Before measurement, the particle IS spread out simultaneously over the region containing the wavefunction.

I still don't see how this has anything to do with the speed of information. Once you've made your measurement, that particle is at a particular location already and nowhere else. So what is the "information traveling" here?

Zz.
 
ZapperZ said:
The length makes no difference. Before measurement, the particle IS spread out simultaneously over the region containing the wavefunction.

I still don't see how this has anything to do with the speed of information. Once you've made your measurement, that particle is at a particular location already and nowhere else. So what is the "information traveling" here?

Zz.

Let me change to another example to expose the problem, say 2 stars has distance 1 light year, if I move one, how long does it take for another to move?

If consider one starA have its own wavefunction(superposition of all the particles it contained), and another star offer its gravitation potentail for starA to ''sit'' in. If accroding to what you explained, because, starA's wavefunction is sperad all over the space, then if move starA, starB should be move instantly,i.e. infomation is instant updated.

I asked this peoblem in Relativity part, the answer is, starB will move 1 year later rather than instantly.

Am I right? Or wavefunction does not apply to big stuff? How about just two particles distanced 1 light year?

Thanks a lot
 
luxiaolei said:
Let me change to another example to expose the problem, say 2 stars has distance 1 light year, if I move one, how long does it take for another to move?

If consider one starA have its own wavefunction(superposition of all the particles it contained), and another star offer its gravitation potentail for starA to ''sit'' in. If accroding to what you explained, because, starA's wavefunction is sperad all over the space, then if move starA, starB should be move instantly,i.e. infomation is instant updated.

I asked this peoblem in Relativity part, the answer is, starB will move 1 year later rather than instantly.

Am I right? Or wavefunction does not apply to big stuff? How about just two particles distanced 1 light year?

Thanks a lot

Is this even an equivalent question? One is a quantum system. The other isn't!

I'm getting even more confused here. Maybe someone else has a clearer idea on what you want, so I'll let him/her tackle this.

Zz.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
7K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K