MHB Initial and boundary value problem

Click For Summary
The discussion revolves around solving an initial and boundary value problem defined by a partial differential equation. The user has derived the separation of variables, leading to two ordinary differential equations for X and T, with boundary conditions applied. They express concern about how to relate the parameter β to an integer n in their solution for X. Other participants suggest that the solution for X is valid for any β and encourage continuing the solution process without overcomplicating it. The conversation highlights the importance of clarity in defining parameters and the need for further exploration of the solution.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to find the solution of the following initial and boundary value problem:

$$u_t(x,t)-u_{xx}(x,t)=0, x>0, t>0 \\ u_x(0,t)=0, t>0, \\ u(x,0)=x^2, x>0.$$I have done the following so far:

$$u(x,t)=X(x) T(t)$$

$$u_t(x,t)=u_{xx}(x,t) \Rightarrow \frac{T'(t)}{T(t)}=\frac{X''(x)}{X(x)}=-\lambda$$

$$u_x(0,t)=0 \Rightarrow X'(0)=0$$

Then we have the following two problems:$$\left\{\begin{matrix}
X''(x)+\lambda X(x)=0\\
X'(0)=0
\end{matrix}\right.$$

and

$$\left\{\begin{matrix}
T'(t)+\lambda T(t)=0
\end{matrix}\right.$$We have that $\lambda=\beta^2$ for some $\beta>0$.

So $X''(x)+\beta^2 X(x)=0 \Rightarrow X(x)=C \sin{(\beta x)}+D \cos{(\beta x)}$.

$X'(0)=0 \Rightarrow C=0$.

So $X(x)=D \cos{(\beta x)}$.

But don't we have to write $\beta$ in respect to $n$ ? (Thinking)

How could we do so? Or have I done something wrong?
 
Physics news on Phys.org
evinda said:
But don't we have to write $\beta$ in respect to $n$ ?

How could we do so? Or have I done something wrong?

Hey evinda!

What is $n$?
Doesn't the solution for X hold for any $\beta$?
Perhaps we should just continue? (Wondering)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K