I Instability of hydrogen ground state if the time-reversal operator is unitary

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Apparently if we try to represent the time reversal operator by a unitary operator ##T## satisfying ##U(t)T = TU(-t)##, then the ground state of hydrogen (the hamiltonian of which is time-reversal invariant) is unstable. But if ##T## is anti-unitary (i.e. ##\langle a | T^{\dagger} T | b \rangle = \langle a | b \rangle^*##) then the instability is avoided. Why?
 
Physics news on Phys.org
ergospherical said:
Apparently
According to ...?
 
I guess ##U(t)=\exp(-\mathrm{i} H t)## is the time-evolution operator (for the states in the Schrödinger picture). If you want to have
$$U(-t)=\exp(\mathrm{i} t H) = T^{\dagger} U(t) T = \exp[T^{\dagger} (-\mathrm{i} t H) \hat{T}],$$
you must have
$$T^{\dagger} (-\mathrm{i} t H) \hat{T}=+\mathrm{i} t H.$$
Since ##t \in \mathbb{R}## for both ##T## unitary or antiunitary that implies
$$T^{\dagger} i H T=-\mathrm{i} H.$$
If ##T## where unitary, that would imply that ##T^{\dagger} H T=-H##, which implies that for any eigenvalue ##E## of ##H## also ##-E## must be an eigenvector:
$$H T |E \rangle=T T^{\dagger} H T |E \rangle=-T H |E \rangle=-E T |E \rangle,$$
i.e., indeed ##T|E \rangle## is an eigenvector of eigenvalue ##(-E)##. Since now the energy spectrum for a free particle (or that of an electron in presence of a Coulomb potential) has a lower bound, ##T## cannot be a symmetry operator if realized as a unitary operator, which implies that time-reversal symmetry must be realized by an anti-unitary symmetry operator.
 
  • Like
Likes strangerep, ergospherical and dextercioby
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top