Integer Part of $$\sum_{n=1}^{2001}\dfrac{1}{a_n+1}$$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion focuses on calculating the integer part of the sum $$\sum_{n=1}^{2001}\dfrac{1}{a_n+1}$$ where the sequence is defined by $$a_1=\dfrac{1}{3}$$ and $$a_{n+1}=a_n^2+a_n$$ for \(n=1,2,\ldots,2000\). The sequence grows rapidly due to its recursive definition, leading to the conclusion that the terms \(a_n\) approach large values as \(n\) increases. Consequently, the sum converges to a specific integer value, which is the main objective of the problem.

PREREQUISITES
  • Understanding of recursive sequences and their properties
  • Familiarity with limits and convergence in sequences
  • Basic knowledge of summation notation and series
  • Ability to manipulate algebraic expressions involving fractions
NEXT STEPS
  • Explore the properties of recursive sequences, particularly those defined by polynomial functions
  • Learn about convergence criteria for sequences and series
  • Investigate techniques for evaluating infinite series and their integer parts
  • Study the behavior of sequences defined by quadratic recursions
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in sequence analysis and summation techniques.

Albert1
Messages
1,221
Reaction score
0
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n,\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n---(1),\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
hint:
take reciprocals of both sides of (1)
and note: $a_{2001}>a_{2000}>-------->a_4>1>a_3>a_2>a_1=\dfrac {1}{3}$
 
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
 
Albert said:
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
I´m sorry for my wrong conclusion. The integer part must be $2$. This is not obvious in the quantitative approach, because, I´ve made a rounding error. Thankyou for a most challenging puzzle, Albert!
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
Neat
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
991
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K