MHB Integer Part of $$\sum_{n=1}^{2001}\dfrac{1}{a_n+1}$$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Albert1
Messages
1,221
Reaction score
0
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n,\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n---(1),\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
hint:
take reciprocals of both sides of (1)
and note: $a_{2001}>a_{2000}>-------->a_4>1>a_3>a_2>a_1=\dfrac {1}{3}$
 
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
 
Albert said:
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
I´m sorry for my wrong conclusion. The integer part must be $2$. This is not obvious in the quantitative approach, because, I´ve made a rounding error. Thankyou for a most challenging puzzle, Albert!
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
Neat
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top