MHB Integer Part of $$\sum_{n=1}^{2001}\dfrac{1}{a_n+1}$$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The sequence defined by \( a_1 = \frac{1}{3} \) and \( a_{n+1} = a_n^2 + a_n \) grows rapidly, leading to large values for \( a_n \) as \( n \) increases. Consequently, the terms \( \frac{1}{a_n + 1} \) approach zero for larger \( n \). The sum \( \sum_{n=1}^{2001} \frac{1}{a_n + 1} \) converges to a finite value, primarily influenced by the initial terms of the sequence. The integer part of this sum can be calculated by evaluating the first few terms, which dominate the overall sum. Thus, the integer part of the sum is determined to be 1.
Albert1
Messages
1,221
Reaction score
0
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n,\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n---(1),\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
hint:
take reciprocals of both sides of (1)
and note: $a_{2001}>a_{2000}>-------->a_4>1>a_3>a_2>a_1=\dfrac {1}{3}$
 
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
 
Albert said:
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
I´m sorry for my wrong conclusion. The integer part must be $2$. This is not obvious in the quantitative approach, because, I´ve made a rounding error. Thankyou for a most challenging puzzle, Albert!
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
Neat
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
970
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K