MHB Integer Part of $$\sum_{n=1}^{2001}\dfrac{1}{a_n+1}$$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The sequence defined by \( a_1 = \frac{1}{3} \) and \( a_{n+1} = a_n^2 + a_n \) grows rapidly, leading to large values for \( a_n \) as \( n \) increases. Consequently, the terms \( \frac{1}{a_n + 1} \) approach zero for larger \( n \). The sum \( \sum_{n=1}^{2001} \frac{1}{a_n + 1} \) converges to a finite value, primarily influenced by the initial terms of the sequence. The integer part of this sum can be calculated by evaluating the first few terms, which dominate the overall sum. Thus, the integer part of the sum is determined to be 1.
Albert1
Messages
1,221
Reaction score
0
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n,\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$$a\,\, sequence:a_1=\dfrac {1}{3}\,\, and \,\, \,\, a_{n+1}=a_n^2+a_n---(1),\,\, n=1,2,3,----2000\\
find \,\, the \,\, integer \,\, part\,\, of :\sum_{n=1}^{2001}\dfrac {1}{a_{n}+1}$$
hint:
take reciprocals of both sides of (1)
and note: $a_{2001}>a_{2000}>-------->a_4>1>a_3>a_2>a_1=\dfrac {1}{3}$
 
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
 
Albert said:
$2<\dfrac{1}{a_1}-\dfrac{1}{a_{2002}}<3$
so the integer part should be 2
I´m sorry for my wrong conclusion. The integer part must be $2$. This is not obvious in the quantitative approach, because, I´ve made a rounding error. Thankyou for a most challenging puzzle, Albert!
 
lfdahl said:
My solution(s):

A. First a quantitative approach.We can rewrite the sum, by noting that:

\[a_{n+1} = a_n^2+a_n \Rightarrow a_{n+1}+1 = a_n^2+a_n+1\Rightarrow \frac{1}{a_{n+1}+1} = \frac{1}{a_n^2+a_n+1}\]

Thus:

\[\sum_{n=1}^{2001}\frac{1}{a_n+1} = \frac{1}{a_1+1}+\sum_{n=1}^{2000}\frac{1}{a_n^2+a_n+1} \]

For $n \ge 4$ the $a_n$ are greater than 1, and grow in power of $2$, so the sum converges rapidly. Please cf. the table below.The first $9$ terms:

\[\begin{matrix} n & a_n & \frac{1}{a_n+1} & \sum_{i=1}^{n}\frac{1}{a_i+1}\\ 1 & 1/3 \approx 0.333 & 3/4 =0.75 & 3/4 = 0.75\\ 2& 4/9 \approx 0.444 & 9/13\approx 0.692 & 75/52 \approx 1.442\\ 3& 52/81 \approx 0.642& 81/133 \approx 0.609 & \frac{14187}{6916} \approx 2.051\\ 4& \frac{6916}{6561} \approx 1.054 & \frac{6561}{13477}\approx 0.487 & \approx 2.538\\ 5& \approx 2.165 & \approx 0.316 & \approx 2.854\\ 6&\approx 6.854 & \approx 0.127 & \approx 2.981\\ 7& \approx 53.82 & \approx 0.018 & \approx 2.999\\ 8& \approx 2951 & \approx 0.0003 & \approx 3.000\\ 9& \approx 8710990 & \approx 0.0000001 & \approx 3.000 \end{matrix}\]Thus the integer part of the sum is $3$.B. Then there is a qualitative approach:

Rewriting the recursive relation:

\[a_{n+1} = a_n^2+a_n \Rightarrow \frac{1}{a_{n+1}}=\frac{1}{a_n(a_n+1)} = \frac{1}{a_n}-\frac{1}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n}-\frac{1}{a_{n+1}}\]

So we have a telescoping sum:

\[\sum_{n = 1}^{2001} \frac{1}{a_n+1}= \sum_{n = 1}^{2001}\left ( \frac{1}{a_n} -\frac{1}{a_{n+1}}\right ) \\\\ =\left ( \frac{1}{a_1}-\frac{1}{a_2} \right )+\left (\frac{1}{a_2}-\frac{1}{a_3} \right )+ \left (\frac{1}{a_3}-\frac{1}{a_4} \right )+...+ \left (\frac{1}{a_{2001}}-\frac{1}{a_{2002}} \right )=\frac{1}{a_1}-\frac{1}{a_{2002}} = \frac{1}{a_1} = 3.\]

From the table, we know, that $a_n$ grows rapidly above $1$ for $n >4$.
Hence, the last term $\frac{1}{a_{2002}}$ can be ignored.
Neat
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top