MHB Integer solutions of system of equations

Click For Summary
The discussion focuses on finding all integer solutions for the equations x+y+z=3 and x^3+y^3+z^3=3. Participants are attempting to clarify and correct previous answers, indicating that there may have been misunderstandings or errors in earlier responses. The conversation highlights the importance of accuracy in mathematical solutions and the need for clear communication. The initial inquiry remains unresolved as participants seek the correct integer solutions. The thread emphasizes collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all integer solutions of the system of equations $x+y+z=3$ and $x^3+y^3+z^3=3$.
 
Mathematics news on Phys.org
we are given
$x+y+z = 3 \cdots(1)$
and
$x^3+y^3+z^3 = 3\cdots(2)$
from (1)
$x+y = 3 - z\cdots(3)$
and from (2)
$x^3+y^3 = 3 - z^3\cdots(4)$
From (3) and (4)
because $x+y$ divides $x^3+y^3$ so $x+y$ divides $3-z^3$ or $3-z$ divides $3-z^3$
so $z-3$ divides $z^3- 3$
as $z-3$ divides $z^3-3^3$ or $z^3 - 27$
so $z-3$ divides $(z^3-3) - (z^3- 27) = 24$
further if we have mod 9 then
$x^3 = 0\, or 1\,or\, -1$
$y^3 = 0\, or 1\,or\, -1$
$z^3 = 0\, or 1\,or\, -1$
as we have $x^3+y^3+z^3 = 3$ so we have $x^3=y^3=z^3 = 1$ mod 9
so $x \equiv y \equiv z \equiv 1\pmod 3$
so we need to take x-3 such that they are 1 mod 3 and factor of 24
they are ${ -8, -2, 1, 4}$
This gives choices for x as $(-5, 1, 4, 7)$
same for y and z and we can checking the sets get $x=y=z=1$
 
Last edited:
Sorry kaliprasad, your answer is not quite right...
 
anemone said:
Sorry kaliprasad, your answer is not quite right...
May be. I would like to know the correct answer
 
There was a typo error in first line and I corrected the same. Otherwise I do not find error if any. This may be pointed
 
uppose $(x,\,y,\,z)$ is the set of solution.

From the identity $(x+y+z)^3-(x^3+y^3+z^3)=3(x+y)(y+z)(z+x)$, we get $8=(3-z)(3-x)(3-y)$. Since $6=(3-z)+(3-x)+(3-y)$, checking the factorization of 8, we see that the solutions are $(1,\,1,\,1)$, $(-5,\,4,\,4)$, $(4,\,-5,\,4)$ and $(4,\,4,\,-5)$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K