MHB Integrate 3/(x(2-sqrt(x))) - No Partial Fractions

  • Thread starter Thread starter araz1
  • Start date Start date
  • Tags Tags
    Integrate
Click For Summary
The discussion focuses on integrating the function 3/(x(2-sqrt(x))) without using partial fractions, utilizing the substitution u=sqrt(x). The integral is transformed into a more manageable form, leading to the expression 6∫1/(u(2-u)) du. A clever substitution involving a variable change is suggested to simplify the integral further, ultimately yielding a result that may involve an inverse hyperbolic trig function. The conversation also raises a question about the rationale behind avoiding partial fractions in this context. This method demonstrates an alternative approach to solving integrals without relying on traditional techniques.
araz1
Messages
9
Reaction score
0
integral of 3/(x(2-sqrt(x))) using u=sqrt(x)?
But not using partial fractions
 
Physics news on Phys.org
[math]\int \dfrac{3}{x(2 - \sqrt{x} )} ~ dx = \int \dfrac{3}{u^2 (2- u)} ~ 2u ~du = \int \dfrac{6}{u (2 - u)} ~du[/math]

Let's pull a trick that occasionally works. I'm going to let 2 - u = a - v and u = a + v. If we add these two equations we get 2 = 2a. Thus a = 1. So 2 - u = 1 - v and u = 1 + v. Putting this into your integral gives
[math]\int \dfrac{6}{u (2 - u)} ~ du = \int \dfrac{6}{(1 + v)(1 - v)} ~ dv = \int \dfrac{6}{1 - v^2} ~ dv[/math]

which you should be able to calculate directly. (Unless you know the trick to integrate this it is going to be difficult.)

-Dan
 
Last edited by a moderator:
araz said:
integral of 3/(x(2-sqrt(x))) using u=sqrt(x)?
But not using partial fractions

$u = \sqrt{x} \implies du = \dfrac{dx}{2\sqrt{x}}$

$\displaystyle 3 \int \dfrac{dx}{x(2-\sqrt{x})} = 2 \cdot 3\int \dfrac{dx}{2\sqrt{x}(2\sqrt{x} - x)}$

substitute ...

$\displaystyle 6\int \dfrac{du}{2u - u^2} = -6 \int \dfrac{du}{(u^2 - 2u + 1) - 1} = -6 \int \dfrac{du}{(u-1)^2 - 1}$

since partial fractions is off the table, the antiderivative will involve an inverse hyperbolic trig function
 
topsquark said:
[math]\int \dfrac{3}{x(2 - \sqrt{x} )} ~ dx = \int \dfrac{3}{u^2 (2- u)} ~ 2u ~du = \int \dfrac{6}{u (2 - u)} ~du[/math]

Let's pull a trick that occasionally works. I'm going to let 2 - u = a - v and u = a + v. If we add these two equations we get 2 = 2a. Thus a = 1. So 2 - u = 1 - v and u = 1 + v. Putting this into your integral gives
[math]\int \dfrac{6}{u (2 - u)} ~ du = \int \dfrac{6}{(1 + v)(1 - v)} ~ dv = \int \dfrac{6}{1 - v^2} ~ dv[/math]

which you should be able to calculate directly. (Unless you know the trick to integrate this it is going to be difficult.)

-Dan
Thank you for your time.
 
skeeter said:
$u = \sqrt{x} \implies du = \dfrac{dx}{2\sqrt{x}}$

$\displaystyle 3 \int \dfrac{dx}{x(2-\sqrt{x})} = 2 \cdot 3\int \dfrac{dx}{2\sqrt{x}(2\sqrt{x} - x)}$

substitute ...

$\displaystyle 6\int \dfrac{du}{2u - u^2} = -6 \int \dfrac{du}{(u^2 - 2u + 1) - 1} = -6 \int \dfrac{du}{(u-1)^2 - 1}$

since partial fractions is off the table, the antiderivative will involve an inverse hyperbolic trig function
Thank you for your time.
 
Why wouldn't you use partial fractions though?
 

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
12
Views
3K
Replies
6
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K