Integration--Cauchy Principal Value, Residue, line integration, poles

Click For Summary
SUMMARY

The integral $$\int_0^{\infty}\frac{(\log x)^2}{1 + x^2}dx$$ evaluates to $$\frac{\pi^3}{8}$$ using complex analysis techniques. The discussion emphasizes the importance of defining a branch cut for the multivalued function $$\log z$$, specifically along the negative imaginary axis. The contour integration approach involves the residue theorem, where the function $$f(z) = \frac{(\log z)^2}{1+z^2}$$ is analyzed around its poles. The final result is derived by equating real parts of integrals and applying limits to simplify the expression.

PREREQUISITES
  • Complex analysis, specifically contour integration
  • Understanding of multivalued functions and branch cuts
  • Residue theorem application in complex integrals
  • Knowledge of logarithmic properties in complex analysis
NEXT STEPS
  • Study the residue theorem in complex analysis
  • Learn about branch cuts and their implications in complex functions
  • Explore keyhole contour integration techniques
  • Investigate the properties of logarithmic functions in the complex plane
USEFUL FOR

Mathematicians, physicists, and students studying complex analysis, particularly those interested in advanced integration techniques and the evaluation of improper integrals.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\int_0^{\infty}\frac{(\log x)^2}{1 + x^2}dx = \frac{\pi^3}{8}
$$

I have no idea what to do with this integral. I can't see it is even and do 1/2 the integral from -infinity to infinity since log -x doesn't make sense.
 
Physics news on Phys.org
$\log x$ is a multivalued function, so there needs to be a branch cut somewhere. Have you used the keyhole contour before?
 
Random Variable said:
$\log x$ is a multivalued function, so there needs to be a branch cut somewhere. Have you used the keyhole contour before?

No I think log is supposed to be viewed as the real log in this integral.
If you have Lang's book, I can tell you what page it is on.
 
Let me correct myself. You're going to let $\displaystyle f(z) = \frac{\log^{2} z}{1+z^{2}}$ and $\log z$ is a multivalued function.

---------- Post added at 11:42 ---------- Previous post was at 10:29 ----------

Define the cut along the negative imaginary axis (including the origin). Then the contour is exactly the same as the contour for $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx $.

let $\displaystyle f(z) = \frac{(\log z)^{2}}{1+z^{2}}$ and recall that $\displaystyle \log z = \ln z + i \arg z$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i \ \text{Res} [f,i] $

$\displaystyle = 2 \pi i \lim_{z \to i} \ (z-i) \frac{(\log z)^2}{1+z^{2}} = 2 \pi i \frac{(\log i)^{2}}{2i} = \pi \left( \ln |i| + i \arg{i} \right)^{2} = \pi \left(\frac{i \pi}{2} \right)^{2} = \frac{-\pi^{3}}{4}$so we have $\displaystyle \int_{-R}^{-r} \frac{(\ln |x| + i \pi)^{2}}{1+x^{2}} \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} \frac{(\ln|x| + i0)^{2}}{1+x^{2}} \ dx + \int_{C_{R}} f(z) \ dz = \frac{-\pi^{3}}{4}$If you let $r$ to go to zero and $R$ go to infinity, the second the fourth integrals will go to zero. You can show that using the ML inequality.$\displaystyle \text{PV} \left( \int_{-\infty}^{0} \frac{(\ln |x|)^{2} + 2 \pi i \ln |x| - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right)$

$ \displaystyle =\text{PV} \left( \int_{0}^{\infty} \frac{(\ln x)^{2} + 2 \pi i \ln x - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right) = \frac{-\pi^{3}}{4} $now equate the real parts on both sides

$ \displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \pi^{2} \int_{0}^{\infty} \frac{1}{1+x^{2}} \ dx = \frac{-\pi^{3}}{4} $ (I dropped the PV label since both integrals converge.)

so $\displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \frac{-\pi^{3}}{2} = \frac{-\pi^{3}}{4} \implies \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx = \frac{\pi^{3}}{8}$ (Whew)
 
Random Variable said:
Let me correct myself. You're going to let $\displaystyle f(z) = \frac{\log^{2} z}{1+z^{2}}$ and $\log z$ is a multivalued function.

---------- Post added at 11:42 ---------- Previous post was at 10:29 ----------

Define the cut along the negative imaginary axis (including the origin). Then the contour is exactly the same as the contour for $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx $.

let $\displaystyle f(z) = \frac{(\log z)^{2}}{1+z^{2}}$ and recall that $\displaystyle \log z = \ln z + i \arg z$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i \ \text{Res} [f,i] $

$\displaystyle = 2 \pi i \lim_{z \to i} \ (z-i) \frac{(\log z)^2}{1+z^{2}} = 2 \pi i \frac{(\log i)^{2}}{2i} = \pi \left( \ln |i| + i \arg{i} \right)^{2} = \pi \left(\frac{i \pi}{2} \right)^{2} = \frac{-\pi^{3}}{4}$so we have $\displaystyle \int_{-R}^{-r} \frac{(\ln |x| + i \pi)^{2}}{1+x^{2}} \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} \frac{(\ln|x| + i0)^{2}}{1+x^{2}} \ dx + \int_{C_{R}} f(z) \ dz = \frac{-\pi^{3}}{4}$If you let $r$ to go to zero and $R$ go to infinity, the second the fourth integrals will go to zero. You can show that using the ML inequality.$\displaystyle \text{PV} \left( \int_{-\infty}^{0} \frac{(\ln |x|)^{2} + 2 \pi i \ln |x| - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right)$

$ \displaystyle =\text{PV} \left( \int_{0}^{\infty} \frac{(\ln x)^{2} + 2 \pi i \ln x - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right) = \frac{-\pi^{3}}{4} $now equate the real parts on both sides

$ \displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \pi^{2} \int_{0}^{\infty} \frac{1}{1+x^{2}} \ dx = \frac{-\pi^{3}}{4} $ (I dropped the PV label since both integrals converge.)

so $\displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \frac{-\pi^{3}}{2} = \frac{-\pi^{3}}{4} \implies \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx = \frac{\pi^{3}}{8}$ (Whew)

So the contour is the semi-circle in the upper half plane?
 
Yes, but with a small semi-circle about the origin to avoid the logarithmic singularity there. A keyhole contour was not needed.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K