MHB Integration--Cauchy Principal Value, Residue, line integration, poles

Click For Summary
The integral $$\int_0^{\infty}\frac{(\log x)^2}{1 + x^2}dx$$ evaluates to $\frac{\pi^3}{8}$. The discussion highlights the use of complex analysis, specifically the residue theorem, to solve the integral. A branch cut for the logarithm is defined along the negative imaginary axis, and the contour integration method is employed to handle the multivalued nature of the logarithm. The final result is derived by equating real parts from both sides of the integral equation. The approach confirms that a keyhole contour was unnecessary, as a semicircular contour in the upper half-plane suffices.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\int_0^{\infty}\frac{(\log x)^2}{1 + x^2}dx = \frac{\pi^3}{8}
$$

I have no idea what to do with this integral. I can't see it is even and do 1/2 the integral from -infinity to infinity since log -x doesn't make sense.
 
Physics news on Phys.org
$\log x$ is a multivalued function, so there needs to be a branch cut somewhere. Have you used the keyhole contour before?
 
Random Variable said:
$\log x$ is a multivalued function, so there needs to be a branch cut somewhere. Have you used the keyhole contour before?

No I think log is supposed to be viewed as the real log in this integral.
If you have Lang's book, I can tell you what page it is on.
 
Let me correct myself. You're going to let $\displaystyle f(z) = \frac{\log^{2} z}{1+z^{2}}$ and $\log z$ is a multivalued function.

---------- Post added at 11:42 ---------- Previous post was at 10:29 ----------

Define the cut along the negative imaginary axis (including the origin). Then the contour is exactly the same as the contour for $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx $.

let $\displaystyle f(z) = \frac{(\log z)^{2}}{1+z^{2}}$ and recall that $\displaystyle \log z = \ln z + i \arg z$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i \ \text{Res} [f,i] $

$\displaystyle = 2 \pi i \lim_{z \to i} \ (z-i) \frac{(\log z)^2}{1+z^{2}} = 2 \pi i \frac{(\log i)^{2}}{2i} = \pi \left( \ln |i| + i \arg{i} \right)^{2} = \pi \left(\frac{i \pi}{2} \right)^{2} = \frac{-\pi^{3}}{4}$so we have $\displaystyle \int_{-R}^{-r} \frac{(\ln |x| + i \pi)^{2}}{1+x^{2}} \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} \frac{(\ln|x| + i0)^{2}}{1+x^{2}} \ dx + \int_{C_{R}} f(z) \ dz = \frac{-\pi^{3}}{4}$If you let $r$ to go to zero and $R$ go to infinity, the second the fourth integrals will go to zero. You can show that using the ML inequality.$\displaystyle \text{PV} \left( \int_{-\infty}^{0} \frac{(\ln |x|)^{2} + 2 \pi i \ln |x| - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right)$

$ \displaystyle =\text{PV} \left( \int_{0}^{\infty} \frac{(\ln x)^{2} + 2 \pi i \ln x - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right) = \frac{-\pi^{3}}{4} $now equate the real parts on both sides

$ \displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \pi^{2} \int_{0}^{\infty} \frac{1}{1+x^{2}} \ dx = \frac{-\pi^{3}}{4} $ (I dropped the PV label since both integrals converge.)

so $\displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \frac{-\pi^{3}}{2} = \frac{-\pi^{3}}{4} \implies \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx = \frac{\pi^{3}}{8}$ (Whew)
 
Random Variable said:
Let me correct myself. You're going to let $\displaystyle f(z) = \frac{\log^{2} z}{1+z^{2}}$ and $\log z$ is a multivalued function.

---------- Post added at 11:42 ---------- Previous post was at 10:29 ----------

Define the cut along the negative imaginary axis (including the origin). Then the contour is exactly the same as the contour for $\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \ dx $.

let $\displaystyle f(z) = \frac{(\log z)^{2}}{1+z^{2}}$ and recall that $\displaystyle \log z = \ln z + i \arg z$

$\displaystyle \int_{-R}^{-r} f(x) \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} f(x) \ dx + \int_{C_{R}} f(z) \ dz = 2 \pi i \ \text{Res} [f,i] $

$\displaystyle = 2 \pi i \lim_{z \to i} \ (z-i) \frac{(\log z)^2}{1+z^{2}} = 2 \pi i \frac{(\log i)^{2}}{2i} = \pi \left( \ln |i| + i \arg{i} \right)^{2} = \pi \left(\frac{i \pi}{2} \right)^{2} = \frac{-\pi^{3}}{4}$so we have $\displaystyle \int_{-R}^{-r} \frac{(\ln |x| + i \pi)^{2}}{1+x^{2}} \ dx + \int_{C_{r}} f(z) \ dz + \int_{r}^{R} \frac{(\ln|x| + i0)^{2}}{1+x^{2}} \ dx + \int_{C_{R}} f(z) \ dz = \frac{-\pi^{3}}{4}$If you let $r$ to go to zero and $R$ go to infinity, the second the fourth integrals will go to zero. You can show that using the ML inequality.$\displaystyle \text{PV} \left( \int_{-\infty}^{0} \frac{(\ln |x|)^{2} + 2 \pi i \ln |x| - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right)$

$ \displaystyle =\text{PV} \left( \int_{0}^{\infty} \frac{(\ln x)^{2} + 2 \pi i \ln x - \pi^{2}} {1+x^{2}} + \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx \right) = \frac{-\pi^{3}}{4} $now equate the real parts on both sides

$ \displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \pi^{2} \int_{0}^{\infty} \frac{1}{1+x^{2}} \ dx = \frac{-\pi^{3}}{4} $ (I dropped the PV label since both integrals converge.)

so $\displaystyle 2 \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx - \frac{-\pi^{3}}{2} = \frac{-\pi^{3}}{4} \implies \int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} \ dx = \frac{\pi^{3}}{8}$ (Whew)

So the contour is the semi-circle in the upper half plane?
 
Yes, but with a small semi-circle about the origin to avoid the logarithmic singularity there. A keyhole contour was not needed.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
898
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K