I will try to walk you through how I would approach this problem using a trigonometric substitution. We are given to evaluate:
$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\int\frac{1}{u\sqrt{(4u)^2-3^2}}\,du$$
Now, when I look at the radicand in the denominator, I think of the Pythagorean identity:
$$\tan^2(\theta)=\sec^2(\theta)-1$$
So, this leads me to make the substitution:
$$4u=3\sec(\theta)\,\therefore\,4\,du=3\sec(\theta) \tan(\theta)\,d\theta$$
and this transforms the indefinite integral to:
$$\int\frac{\frac{3}{4}\sec(\theta)\tan(\theta)}{ \frac{3}{4}\sec(\theta)\sqrt{3^2\sec^2(\theta)-3^2}}\,d\theta=\int\frac{\sec(\theta)\tan(\theta)}{3\sec(\theta)\tan(\theta)}\,d\theta= \frac{1}{3}\int\,d\theta=\frac{1}{3}\theta+C$$
Now, using our substitution, we may solve for $\theta$:
$$4u=3\sec(\theta)$$
$$\theta=\sec^{-1}\left(\frac{4u}{3} \right)$$
and so we may conclude:
$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\frac{1}{3}\sec^{-1}\left(\frac{4u}{3} \right)+C$$