Integration involving substitutions II

  • Context: MHB 
  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

The forum discussion centers on the integration of the function \(\int\frac{du}{u\sqrt{16u^2-9}}\) using trigonometric and hyperbolic substitutions. The initial approach involved substituting \(4u = 3\sec(\theta)\), leading to the integral being transformed into a more manageable form. The correct result of the integral is \(\frac{1}{3}\sec^{-1}\left(\frac{4u}{3}\right) + C\). Participants clarified the importance of proper substitutions and the use of identities in simplifying the integral.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with trigonometric identities and substitutions.
  • Knowledge of hyperbolic functions and their properties.
  • Ability to manipulate algebraic expressions under square roots.
NEXT STEPS
  • Study trigonometric substitution techniques in depth, focusing on the Pythagorean identities.
  • Learn about hyperbolic functions and their applications in integration.
  • Practice solving integrals involving square roots and rational functions.
  • Explore advanced integration techniques, including integration by parts and partial fractions.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their understanding of trigonometric and hyperbolic substitutions in integral calculus.

paulmdrdo1
Messages
382
Reaction score
0
\begin{align*}\displaystyle \int\frac{du}{u\sqrt{16u^2-9}}\\& let\,\acute{u} =\,4u\\&d\acute{u}=4du\\&du=\frac{1}{4}(d\acute{u})\\ &\frac{1}{4}\int\frac{d\acute{u}}{\acute{u}\sqrt{(\acute{u})^2-a^2}}\\ & =\frac{1}{12}sec^{-1}\frac{4}{3}u+c -->> is\, this\, correct?\end{align*}
 
Physics news on Phys.org
Re: Integration Inverse trig II

paulmdrdo said:
\begin{align*}\displaystyle \int\frac{du}{u\sqrt{16u^2-9}}\\& let\,\acute{u} =\,4u\\&d\acute{u}=4du\\&du=\frac{1}{4}(d\acute{u})\\ &\frac{1}{4}\int\frac{d\acute{u}}{\acute{u}\sqrt{(\acute{u})^2-a^2}}\\ & =\frac{1}{12}sec^{-1}\frac{4}{3}u+c -->> is\, this\, correct?\end{align*}

It's better to use a different letter for a new variable, I know you've changed the symbol slightly but it's difficult to read.

Anyway, it's not correct, as the u outside the square root should become [math]\displaystyle \begin{align*} \frac{u'}{4} \end{align*}[/math].
 
Re: Integration Inverse trig II

paulmdrdo said:
\begin{align*}\displaystyle \int\frac{du}{u\sqrt{16u^2-9}}\\& let\,\acute{u} =\,4u\\&d\acute{u}=4du\\&du=\frac{1}{4}(d\acute{u})\\ &\frac{1}{4}\int\frac{d\acute{u}}{\acute{u}\sqrt{(\acute{u})^2-a^2}}\\ & =\frac{1}{12}sec^{-1}\frac{4}{3}u+c -->> is\, this\, correct?\end{align*}

My approach for this question would be to use hyperbolic and trigonometric substitution. Let [math]\displaystyle \begin{align*} 4u = 3\cosh{(t)} \implies du = \frac{3}{4}\sinh{(t)}\,dt \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{\frac{du}{u \,\sqrt{ \left( 4u \right) ^2 - 9 } } } &= \int{\frac{\frac{3}{4}\sinh{(t)}\,dt}{\frac{3}{4} \cosh{(t)}\sqrt{ \left[ 3\cosh{(t)} \right] ^2 - 9 }}} \\ &= \int{ \frac{\sinh{(t)}\,dt}{\cosh{(t)}\sqrt{9\cosh^2{(t)} - 9}} } \\ &= \int{ \frac{\sinh{(t)}\,dt}{\cosh{(t)}\sqrt{9 \left[ \cosh^2{(t)} - 1 \right] }} } \\ &= \int{\frac{\sinh{(t)}\,dt}{\cosh{(t)}\sqrt{9\sinh^2{(t)}}}} \\ &= \int{\frac{\sinh{(t)}\,dt}{3\cosh{(t)}\sinh{(t)}}} \\ &= \frac{1}{3} \int{ \frac{dt}{\cosh{(t)}} } \\ &= \frac{1}{3} \int{ \frac{\cosh{(t)}\,dt}{\cosh^2{(t)}} } \\ &= \frac{1}{3} \int{ \frac{\cosh{(t)}\,dt}{1 + \sinh^2{(t)}} } \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} \sinh{(t)} = \tan{(\theta)} \implies \cosh{(t)}\,dt = \sec^2{(\theta)} \,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \frac{1}{3} \int{ \frac{\cosh{(t)}\,dt}{1 + \sinh^2{(t)}} } &= \frac{1}{3} \int{ \frac{\sec^2{(\theta)} \,d\theta}{1 + \tan^2{(\theta)}} } \\ &= \frac{1}{3} \int{ \frac{\sec^2{(\theta)}\,d\theta}{\sec^2{(\theta)}} } \\ &= \frac{1}{3} \int{ 1\,d\theta} \\ &= \frac{1}{3} \theta + C \\ &= \frac{1}{3}\arctan{ \left[ \sinh{(t)} \right] } + C \\ &= \frac{1}{3} \arctan{ \left[ \sqrt{ \cosh^2{(t)} - 1 } \right] } + C \\ &= \frac{1}{3} \arctan{ \left[ \sqrt{ \left( \frac{4u}{3} \right) ^2 - 1 } \right] } + C \\ &= \frac{1}{3} \arctan{ \left[ \frac{\sqrt{16u^2 - 9}}{3} \right] } + C \end{align*}[/math]
 
Re: Integration Inverse trig II

Prove It said:
It's better to use a different letter for a new variable, I know you've changed the symbol slightly but it's difficult to read.

Anyway, it's not correct, as the u outside the square root should become [math]\displaystyle \begin{align*} \frac{u'}{4} \end{align*}[/math].
\begin{align*}\displaystyle \int\frac{du}{u\sqrt{16u^2-9}}\\& let\,\acute{u} =\,4u\\&d\acute{u}=4du\\& a = 3 \\& du=\frac{1}{4}(d\acute{u} )\\ &\frac{1}{4}\int\frac{d\acute{u}}{\acute{u}\sqrt{({u'})^2-a^2}}\\ & =\frac{1}{12}sec^{-1}\frac{4}{3}u+c\end{align*}

this is the other part of my solution

\begin{align*}\displaystyle\frac{1}{4}(\frac{1}{a}sec^{-1}\frac{u'}{a}) + c\end{align*}

since a = 3 and u' = 4u i substituted it to have

\begin{align*}\displaystyle\frac{1}{4}(\frac{1}{3}sec^{-1}\frac{4u}{3}) + c\\ \frac{1}{12}sec^{-1}\frac{4}{3}u+c\end{align*}
can you tell me what did i do wrong. please.
 
It appears to me that you are using a table of integrals, such as:

$$\int\frac{dx}{x\sqrt{x^2-a^2}}=\frac{1}{a}\sec^{-1}\left(\frac{x}{a} \right)+C$$

Applying this to your problem, you should write:

$$\int\frac{du}{u\sqrt{16u^2-9}}=\int\frac{4\,du}{4u\sqrt{(4u)^2-3^2}}=\frac{1}{3}\sec^{-1}\left(\frac{4u}{3} \right)+C$$

You should be able to demonstrate that this is equivalent to the result posted by Prove It.
 
I will try to walk you through how I would approach this problem using a trigonometric substitution. We are given to evaluate:

$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\int\frac{1}{u\sqrt{(4u)^2-3^2}}\,du$$

Now, when I look at the radicand in the denominator, I think of the Pythagorean identity:

$$\tan^2(\theta)=\sec^2(\theta)-1$$

So, this leads me to make the substitution:

$$4u=3\sec(\theta)\,\therefore\,4\,du=3\sec(\theta) \tan(\theta)\,d\theta$$

and this transforms the indefinite integral to:

$$\int\frac{\frac{3}{4}\sec(\theta)\tan(\theta)}{ \frac{3}{4}\sec(\theta)\sqrt{3^2\sec^2(\theta)-3^2}}\,d\theta=\int\frac{\sec(\theta)\tan(\theta)}{3\sec(\theta)\tan(\theta)}\,d\theta= \frac{1}{3}\int\,d\theta=\frac{1}{3}\theta+C$$

Now, using our substitution, we may solve for $\theta$:

$$4u=3\sec(\theta)$$

$$\theta=\sec^{-1}\left(\frac{4u}{3} \right)$$

and so we may conclude:

$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\frac{1}{3}\sec^{-1}\left(\frac{4u}{3} \right)+C$$
 
MarkFL said:
I will try to walk you through how I would approach this problem using a trigonometric substitution. We are given to evaluate:

$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\int\frac{1}{u\sqrt{(4u)^2-3^2}}\,du$$

Now, when I look at the radicand in the denominator, I think of the Pythagorean identity:

$$\tan^2(\theta)=\sec^2(\theta)-1$$

So, this leads me to make the substitution:

$$4u=3\sec(\theta)\,\therefore\,4\,du=3\sec(\theta) \tan(\theta)\,d\theta$$

and this transforms the indefinite integral to:

$$\int\frac{\frac{3}{4}\sec(\theta)\tan(\theta)}{ \frac{3}{4}\sec(\theta)\sqrt{3^2\sec^2(\theta)-3^2}}\,d\theta=\int\frac{\sec(\theta)\tan(\theta)}{3\sec(\theta)\tan(\theta)}\,d\theta= \frac{1}{3}\int\,d\theta=\frac{1}{3}\theta+C$$

Now, using our substitution, we may solve for $\theta$:

$$4u=3\sec(\theta)$$

$$\theta=\sec^{-1}\left(\frac{4u}{3} \right)$$

and so we may conclude:

$$\int\frac{1}{u\sqrt{16u^2-9}}\,du=\frac{1}{3}\sec^{-1}\left(\frac{4u}{3} \right)+C$$

i'm still confused about trigonometric substitution. i only use table of integrals leading to inverse trig functions. please enlighten me with trig substitution. what are the rules for that?
 
I am trying my best to do just that...at what point in my post do I lose you?
 
MarkFL said:
I am trying my best to do just that...at what point in my post do I lose you?

\begin{align*}\displaystyle tan^2(\theta)=\sec^2(\theta)-1\end{align*} you used this identities.

and you \begin{align*}\displaystyle let\, 4u=3sec(\theta)\, where\, did\, tan^2(\theta)+1\, go? why\, only\, use\, sec(\theta)\end{align*}
 
Last edited:
  • #10
paulmdrdo said:
\begin{align*}\displaystyle \tan^2(\theta)=\sec^2(\theta)-1\end{align*} you used this identities.

and you let 4u=3sec where did tan2-1 go? why only use sec?

We see that we want to transform:

$$(4u)^2-3^2$$

and given that:

$$3^2\tan^2(\theta)=3^2\sec^2(\theta)-3^2$$

we then see that if we let:

$$4u=3\sec(\theta)$$

then we will have:

$$(4u)^2-3^2=(3\sec(\theta))^2-3^2=3^2\sec^2(\theta)-3^2=3^2\tan^2(\theta)=(3\tan(\theta))^2$$

Now we have transformed this expression into a square, and since it is under a square root, we can get rid of the radical.
 
  • #11
Mark already did in one of your http://www.mathhelpboards.com/f10/integration-involving-trigonometric-substitutions-5545/.
 
  • #12
MarkFL said:
We see that we want to transform:

$$(4u)^2-3^2$$

and given that:

$$3^2\tan^2(\theta)=3^2\sec^2(\theta)-3^2$$

we then see that if we let:

$$4u=3\sec(\theta)$$

then we will have:

$$(4u)^2-3^2=(3\sec(\theta))^2-3^2=3^2\sec^2(\theta)-3^2=3^2\tan^2(\theta)=(3\tan(\theta))^2$$

Now we have transformed this expression into a square, and since it is under a square root, we can get rid of the radical.

now it's clear! thanks! this is the explanation I'm waiting for.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K