MHB Integration of a First order for physical application

crevoise
Messages
5
Reaction score
0
Hello everyone.

I wish to get the solution to the following:

x'(t) = [A*exp(B*t)-C]^(m)

I can get the plotted solution by Matlab, but I wish to find the analytic solution by myself.
Does anyone has some hints to help me in this?

Thanks a lot for your help

/Crevoise
 
Physics news on Phys.org
The RHS is independent of $x$. You can integrate both sides directly, although it's not a pretty integral. You've got yourself a hypergeometric function in there.
 
Ackbach said:
The RHS is independent of $x$. You can integrate both sides directly, although it's not a pretty integral. You've got yourself a hypergeometric function in there.

With simple steps You obtain...

$\displaystyle f(t)= (A\ e^{B\ t}-C)^{m}= \{-C\ (1-\frac{A}{C}\ e^{B\ t})\}^{m}= (-1)^{m}\ C^{m}\ \sum_{n=0}^{m} (-1)^{n}\ \binom{m}{n}\ (\frac{A}{C})^{n}\ e^{n\ B\ t}$ (1)

... and (1) can be integrated 'term by term'...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thanks a lot for your two answers, really helpful!
I should have thought about the binomial theorem...
Thanks again
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
732
  • · Replies 7 ·
Replies
7
Views
2K
  • Sticky
  • · Replies 16 ·
Replies
16
Views
11K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
12
Views
4K
  • · Replies 5 ·
Replies
5
Views
412
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K