Integration ∫ [√(sin^2 x-3sin x+2))/√(sin^2 x+3sin x+2))]dx

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

The integral evaluation of $\displaystyle \int \sqrt{\frac{\sin^2 x-3\sin x+2}{\sin^2 x+3\sin x+2}}dx$ is simplified by substituting $1+\sin x = y$, leading to the expression $\displaystyle I = \int\frac{1}{y}\cdot \sqrt{\frac{3-y}{1+y}}dy$. Further transformations yield the integral $\displaystyle I = 8\int\frac{t^2}{(t^2-3)(1+t^2)}dt$, which is resolved into simpler components. The final result is expressed as $\displaystyle I = \sqrt{3}\cdot \ln\left|\frac{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}\right| + 2\tan^{-1}\left(\sqrt{\frac{2-\sin x}{2+\sin x}}\right) + \mathcal{C}$.

PREREQUISITES
  • Understanding of integral calculus and substitution techniques
  • Familiarity with trigonometric identities and transformations
  • Knowledge of logarithmic and inverse trigonometric functions
  • Experience with algebraic manipulation of rational expressions
NEXT STEPS
  • Study advanced techniques in integral calculus, focusing on trigonometric integrals
  • Explore the use of substitution methods in solving complex integrals
  • Learn about the properties and applications of logarithmic functions in calculus
  • Investigate the relationship between trigonometric functions and their inverses
USEFUL FOR

Mathematicians, calculus students, and educators seeking to deepen their understanding of integral evaluation techniques, particularly those involving trigonometric functions.

juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int \sqrt{\frac{\sin^2 x-3\sin x+2}{\sin^2 x+3\sin x+2}}dx$
 
Physics news on Phys.org
Solution [sp]Let $\displaystyle I = \int\sqrt{\frac{(1-\sin x)(2-\sin x)}{(1+\sin x)(2+\sin x)}}dx$

We can write $\displaystyle \sqrt{\frac{1-\sin x}{1+\sin x}} = \sqrt{\frac{1-\sin x}{1+\sin x}\times \frac{1+\sin x}{1+\sin x}} = \frac{\cos x}{1+\sin x}$So we get $\displaystyle I = \int\frac{\cos x}{1+\sin x}\cdot \sqrt{\frac{2-\sin x}{2+\sin x}}dx$Now Let $1+\sin x= y\;,$ Then $\cos xdx = dy$So Integral $\displaystyle I = \int\frac{1}{y}\cdot \sqrt{\frac{3-y}{1+y}}dy$Now Put $\displaystyle \frac{3-y}{1+y}=t^2\Rightarrow y=\frac{3-t^2}{1+t^2}$So we get $\displaystyle y=-\left[1-\frac{4}{1+t^2}\right] = \left[\frac{4}{1+t^2}-1\right].$

So $\displaystyle dy = -\frac{8t}{(1+t^2)^2}$So Integral $\displaystyle I = \int\frac{1+t^2}{3-t^2}\cdot t\cdot \frac{-8t}{(1+t^2)^2}dt = 8\int\frac{t^2}{(t^2-3)\cdot (1+t^2)}dt$So Integral $\displaystyle I = 2\int \left[\frac{3(t^2+1)+(t^2-3)}{(t^2-3)\cdot (1+t^2)}\right]dt = 2\int \left[\frac{3}{t^2-(\sqrt{3})^2}+\frac{1}{1+t^2}\right]dt$So Integral $\displaystyle I = 6\cdot \frac{1}{2\sqrt{3}}\cdot \ln\left|\frac{t-\sqrt{3}}{t+\sqrt{3}}\right|+2\tan^{-1}(t)+\mathcal{C}$So Integral $\displaystyle I = \sqrt{3}\cdot \ln\left|\frac{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}{\sqrt{2-\sin x}-\sqrt{3}\cdot \sqrt{2+\sin x}}\right|+2\tan^{-1}\left(\sqrt{\frac{2-\sin x}{2+\sin x}}\right)+\mathcal{C}$[/sp]
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K