The integral ∫ √((sin²x - 3sinx + 2)/(sin²x + 3sinx + 2)) dx is evaluated by transforming it into a more manageable form. The expression is rewritten using trigonometric identities, leading to the substitution 1 + sin x = y, which simplifies the integral. Further manipulation involves setting (3 - y)/(1 + y) = t², allowing for a new variable to streamline the integration process. The final result combines logarithmic and arctangent functions, yielding a comprehensive solution. The evaluation concludes with a constant of integration, represented as +C.