Interesting Problem I Found (a set obtained by asymmetric scaling)

Click For Summary
SUMMARY

The discussion centers on the mathematical problem of transforming a set A defined by the inequality $$ A = { (x,y) : x^2 -y^3 +4y \leq 1}$$ through asymmetric scaling and translation. The set B is derived by scaling A by a factor of 3 in the x-direction and 4 in the y-direction, followed by a translation of <-2, 5>. Participants clarify the transformations needed, including substituting x with x+2 and y with y-5 in the function. The correct formulation for the transformed function is $$ k(x,y) = h(3x, 4y) = 9x^2 - 64y^3 + 16y \leq 1 $$, with further adjustments discussed for accurate scaling and translation.

PREREQUISITES
  • Understanding of inequalities in two variables
  • Familiarity with coordinate transformations
  • Knowledge of scaling transformations in linear algebra
  • Experience with graphing tools, specifically Desmos
NEXT STEPS
  • Study the principles of asymmetric scaling in linear algebra
  • Learn about coordinate transformations and their applications
  • Explore graphing techniques using Desmos for visualizing transformations
  • Investigate the implications of translating functions in two-dimensional space
USEFUL FOR

Mathematicians, students studying linear algebra, educators teaching coordinate transformations, and anyone interested in visualizing mathematical functions through graphing tools.

MidgetDwarf
Messages
1,590
Reaction score
703
Homework Statement
Let $$ A = { (x,y) : x^2 -y^3 +4y \leq 1}$$ . Now let B be the set obtained asymmetrically scaling A by a factor of 3 in the x-direction, and by a factor of 4 in the y-direction, then translating the scale set by the vector <-2,5>. Use a graphing tool to show A and B.
Relevant Equations
$$ h(x,y) = x^2 -y^3 +4y \leq 1$$

What does asymmetrically scaling mean?

I am unsure of how to do this problem. I am thinking $$ h(3x,4y) = 9x^2 \ - \ 64y^3 \ + \ 16y \leq 1$$, which gives us the scaling we want in the x-direction and y-direction.

Now, for the translation of points of A by the vector <-2, 5>. I am unsure.

I am a bit embarrassed posting this. It appears that this problem is just a linear transformation problem.

This problem is for fun, and not a hw exercise.

I have attached a graph of the set A.
Here we go!
 
Physics news on Phys.org
MidgetDwarf said:
Homework Statement:: Let $$ A = { (x,y) : x^2 -y^3 +4y \leq 1}$$ . Now let B be the set obtained asymmetrically scaling A by a factor of 3 in the x-direction, and by a factor of 4 in the y-direction, then translating the scale set by the vector <-2,5>. Use a graphing tool to show A and B.
Relevant Equations:: $$ h(x,y) = x^2 -y^3 +4y \leq 1$$

What does asymmetrically scaling mean?

Just as a guess, I think it refers to the different scaling in the x and y directions.
 
MidgetDwarf said:
which gives us the scaling we want in the x-direction and y-direction.
Amplifying the coefficients reduces the x and y values satisfying the equation. That will shrink the area.
For the translation, you want the bit of the graph that was at x=0 to be at x=-2 now. What do you need to substitute for x in the equation ?
 
Thanks for quick response.

So I am thinking of replacing x with x+2 and y with y - 5 into the function ## h(3x, 4y) \ = \ 9x^2 \ - \ 64y^3 \ + \ 16y \leq 1 ##.

Let ##k(x,y) = h(3x, 4y) \ = \ 9x^2 \ - \ 64y^3 \ + \ 16y \leq 1 ##.

So ##k(x+2,y-5) = \ 9(x+2)^2 \ - \ 64(y-5)^3 \ + \ 16(y-5) \leq 1 ##.

I uploaded an image of graph using Desmos. The red graph is the initial set, green graph is the scaled set, and the purple graph is the translated set. Is this correct?
 
Screen Shot 2021-10-31 at 3.46.15 AM.png
 
Isn't this basic linear algebra? B is just Ax + c, with x being a matrix transform and c is a vector offset.
 
MidgetDwarf said:
Thanks for quick response.

So I am thinking of replacing x with x+2 and y with y - 5 into the function ## h(3x, 4y) \ = \ 9x^2 \ - \ 64y^3 \ + \ 16y \leq 1 ##.

Let ##k(x,y) = h(3x, 4y) \ = \ 9x^2 \ - \ 64y^3 \ + \ 16y \leq 1 ##.

So ##k(x+2,y-5) = \ 9(x+2)^2 \ - \ 64(y-5)^3 \ + \ 16(y-5) \leq 1 ##.

I uploaded an image of graph using Desmos. The red graph is the initial set, green graph is the scaled set, and the purple graph is the translated set. Is this correct?
You do not seem to have understood the first paragraph in my post #3. Looks to me like you have scaled it by 1/4 in the y direction.
 
haruspex said:
You do not seem to have understood the first paragraph in my post #3. Looks to me like you have scaled it by 1/4 in the y direction.
Thanks for the reply. Yes, I reread your post #3, and it still is not clear to me.

Since I scaled the set by 1/4 in the y-direction. I am thinking that instead of plugging in 4y into ## h(x,y) = x^2 \ - \ y^3 \ + 4y \ \leq 1 ## , we plug ## \frac {y} {4} ## . Otherwise, was the scaling in the x-direction, and translation ok?
 
MidgetDwarf said:
was the scaling in the x-direction, and translation ok?
Obviously the same principle applies in the x direction. To broaden the set by a factor of 3 you must replace x by x/3.
You got the principle right in the translation, though: to move it left by 2 you replace x with x+2, not x-2.
 
  • #10
If you consider the set of 3-tuples (x,y,z) as S = { x -> x, y->y, z->f(x, y) } and then apply a map such that S' = { x' -> 3x - 2, y' -> 4x + 5, z->f(x,y) == g(x', y') }, it should be obvious that you need to find a function, g(x', y') that is equal to f(x, y) for all values of z. In other words, if Z = f(1, 1), Z1' = g(1, 9) should have the same value. I'm pretty sure if you just solve x for x' and y for y' it works out.
 
  • #11
valenumr said:
If you consider the set of 3-tuples (x,y,z) as S = { x -> x, y->y, z->f(x, y) } and then apply a map such that S' = { x' -> 3x - 2, y' -> 4x + 5, z->f(x,y) == g(x', y') }, it should be obvious that you need to find a function, g(x', y') that is equal to f(x, y) for all values of z. In other words, if Z = f(1, 1), Z1' = g(1, 9) should have the same value. I'm pretty sure if you just solve x for x' and y for y' it works out.
That's a little roundabout way of saying that this is a coordinate transform. If you look at the example of z = g(1,9), you can see that g(1,9) is the same as f(h(1), h(9)), where h is a 2d map. Plug any two numbers into h and you will get back to the original coordinates back.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
565
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 2 ·
Replies
2
Views
5K