# What is Scaling: Definition and 151 Discussions

In Euclidean geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions. The result of uniform scaling is similar (in the geometric sense) to the original. A scale factor of 1 is normally allowed, so that congruent shapes are also classed as similar. Uniform scaling happens, for example, when enlarging or reducing a photograph, or when creating a scale model of a building, car, airplane, etc.
More general is scaling with a separate scale factor for each axis direction. Non-uniform scaling (anisotropic scaling) is obtained when at least one of the scaling factors is different from the others; a special case is directional scaling or stretching (in one direction). Non-uniform scaling changes the shape of the object; e.g. a square may change into a rectangle, or into a parallelogram if the sides of the square are not parallel to the scaling axes (the angles between lines parallel to the axes are preserved, but not all angles). It occurs, for example, when a faraway billboard is viewed from an oblique angle, or when the shadow of a flat object falls on a surface that is not parallel to it.
When the scale factor is larger than 1, (uniform or non-uniform) scaling is sometimes also called dilation or enlargement. When the scale factor is a positive number smaller than 1, scaling is sometimes also called contraction.
In the most general sense, a scaling includes the case in which the directions of scaling are not perpendicular. It also includes the case in which one or more scale factors are equal to zero (projection), and the case of one or more negative scale factors (a directional scaling by -1 is equivalent to a reflection).
Scaling is a linear transformation, and a special case of homothetic transformation. In most cases, the homothetic transformations are non-linear transformations.

View More On Wikipedia.org
1. ### I Linear regression, feature scaling, and regression coefficients

Hello, In studying linear regression more deeply, I learned that scaling play an important role in multiple ways: a) the range of the independent variables ##X## affects the values of the regression coefficients. For example, a predictor variable ##X## with a large range typically get assigned...
2. ### I Method for experimental results analysis

Hello guys, I have conducted an experiment and got some results. I have 3 variables to vary, for example, five x1, five x2, and two x3 and 2 observation results, like y1, y2 I already make y1 y2 and x1 x2 x3 dimensionless since plot is 2D, what I am doing now is just plot when x3=1, x2=1, plot...
3. ### I Determine Scaling Dimension of Field Theory

It is given that a theory is invariant under the length scaling:\begin{align*} x &\rightarrow \lambda x \\ \phi(x) &\rightarrow \lambda^{-D} \phi(\lambda^{-1} x) \end{align*}for some ##D## to be determined. The action of a real scalar field is here:\begin{align*} S = \int d^4 x...
4. ### Scaling pressure drop to other temperatures

Hi, I have some measurements for pressure drop of Helium at room temperature and I would like to scale it to other temperatures. Taking into account that, i) the flow is turbulent, ii) the pressure drop, ##\Delta p##, happens always in the same piping and iii) there is only variation on the...

Here we go!
6. ### MHB Efficiently Scale Pictures in TikZ with Simple Code | No Quotation Marks

as you see from %[scale=0.8] I tried to scale the picture but it didn't after removing the % \begin{tikzpicture}%[scale=0.8] [declare function = { tilde_y(\q) = sign(\q)*sqrt(abs(\q) / (1 - (abs(\q)-3)^3));}, pics/coordinates/.style args={(#1,#2),(#3,#4)}{ code={ %\draw[help lines] (#1,#2) grid...
7. ### Engineering Signals in discrete form (scaling, shifting etc.)

Attempting this question without any guidance from my professors unfortunately as they did not teach this bit. Searched online and also there aren't many questions like this. From what I know, (I) Having n-1 means you should shift right by 1, which means x[0] is now equals to 0? So x[n-1] = [0 5...
8. ### I Scaling and Standardization in Statistical Analysis

Hello everyone, When working with variables in a data set to find the appropriate statistical model (linear, nonlinear regression, etc.), the variables can have different range, standard deviation, mean, etc. Should all the input variables be always standardized and scaled before the analysis...
9. ### MHB Dimensional scaling implementation

I'm not familiar with the concept of dimensional scaling at all. Anyone please help me with this problem. I need to understand how they obtained eq(16) from eq(15) in the paper here so I can do the same when I change Q0 from a constant to a variable function in time. Summary as below: Scaling...
10. ### A Help with the Derrick scaling argument and topological solitons

I have been reading Manton & Sutcliffe for some time now and can't quite wrap my head around something. If you take the Hopf invariant N of a topological soliton ϕ then its Skyrme-Faddeev energy (which I hope I've gotten right up to some constants) E=∫∂iϕ⋅∂iϕ+(∂iϕ×∂jϕ)⋅(∂iϕ×∂jϕ) d3x satisfies...
11. ### A Ground state energy of a particle-in-a-box in coordinate scaling

The energy spectrum of a particle in 1D box is known to be ##E_n = \frac{h^2 n^2}{8mL^2}##, with ##L## the width of the potential well. In 3D, the ground state energy of both cubic and spherical boxes is also proportional to the reciprocal square of the side length or diameter. Does this...
12. ### I Correctly Scaling the Standard Deviation for Scaled Measurements

We're working on a project that plots flux density of a light curve with respect to time. To do this, we had to scale data from different wavelengths so we had just the one variable for the flux. Essentially we took each value for flux density and multiplied it by three over the frequency raised...
13. ### Nuclear Chain Reaction Conditions

Hi all, For my studies I chose a course on scaling up and down of industrial processes (mostly focussed on the chemical industry), but for our project we (a group of students who knew almost nothing about nuclear reactors) chose to look if the approach (dimensional analysis) can be applied to...

36. ### MHB Scaling lognormal distribution by exponential function

I am multiplying a lognormal distribution by an function to scale it larger. While I know that scaling a lognormal distribution by a constant multiplier yields a lognormal distribution, in this case the multiplier is not a constant. Instead, smaller values from the lognormal distribution are...
37. ### Spacetime scaling invariance and quantum gravity

Neil Turok, Director of the Perimeter Institute of Theoretical Physics in Ontario, Canada suggests scaling invariance is a fundamental property of nature, including spacetime. that nature does not recognize any kind of scale, including Planck scale. if true how would this affect the leading...
38. ### Scaling Laws and the Speed of Animals - Comments

klotza submitted a new PF Insights post Scaling Laws and the Speed of Animals Continue reading the Original PF Insights Post.
39. ### Non-dimensionalization of the energy balance

Good evening people of PF! I have recently encountered a problem from Himmelblau's Basic Principles and Calculations in Chem. E. which asks to set up an energy balance for a tank, and then non-dimensionalize the differential equation before solving it. It's not the most complex task, but it's...
40. ### Scaling up the nucleus to the size of a pin.

Homework Statement If the size of the nucleus ( in the range of 10-15m to 10-14m) is scaled up to the tip of a sharp pin, what roughly is the size of an atom ? Assume the tip of the pin to be in the range 10-5m to 10-4m Homework EquationsThe Attempt at a Solution It's scaled up by a...
41. ### Scaling when solving Schrodinger equation numerically

I guess this is just a maths problem about algebra. I'm learning to solve Schrodinger equation numerically, and right now I'm just dealing with the simplest examples like harmonic potential, square well, etc. The problem is that sometimes my program gives some strange results and I suspect it is...
42. ### What is the correct way to compute physical displacement in FEM modal analysis?

Hi all, I have an FEM model that I am doing a modal analysis of. I wanted to check that how I am computing the physical displacement is the correct way, as I've read a lot of about normalising modes, participation factors, effective masses, etc. and I'm not 100% sure on it. I've got the...
43. ### Scaling the parameter of the SO(2) rotation matrix

For the distance function ##(\Delta s)^2 = (\Delta r)^2 + (r \Delta \theta)^2##, the rotation matrix is ##R(\theta) = \begin{pmatrix} cos\ \theta & - sin\ \theta \\ sin\ \theta & cos\ \theta \end{pmatrix}##. That means that for the distance function ##(\Delta s)^2 = (\Delta r)^2 +...
44. M

### Scaling Interpretation for 2-D Continuity PDE: What Does UH/L Represent?

Hi PF! I'm doing some scaling over a PDE and I understand the math side of things but I do not understand the physical side of what we are finding. For example, suppose we have some PDE, say 2-D continuity for it's simplicity ##u_x + v_y = 0##. Let ##L## be the length of a side of a flowing...
45. ### Voltage loss w/ resistor scaling with current

So according to the ideal voltage loss equation V = IR if I double I (per se) I will double the loss in voltage. This is a bit odd and I just want to make sure my intuitive explanation is correct. I am assuming voltage loss is mainly due to some electrons bouncing off the resisting material and...
46. ### Magnetic Gloves for scaling skyscrapers

Hi! I was wondering how I would go about solving a problem like this: (I have experience with up to multi-variable calculus and moderate level physics) So I'm trying to see if it's plausible to create electromagnets, which fit into gloves and/or boots, that would allow a person to climb around...
47. ### Urban scaling - effect in ancient cities = modern cities

http://advances.sciencemag.org/content/1/1/e1400066 Settlement scaling and increasing returns in an ancient society Scott G. Ortman, Andrew H. F. Cabaniss, Jennie O. Sturm, Luís M. A. Bettencourt Science Advances 01 Feb 2015: Vol. 1 no. 1 e1400066 DOI: 10.1126/sciadv.1400066 The basic...
48. ### Nuclear Form Factor - Scaling

Homework Statement [/B] b) For a Form factor of form ##\theta_{(1-r)}## and ##\frac{1}{1 + e^{\frac{r-R}{a}}}##, how will these change when ##r \rightarrow 2r##? c) How would one accelerate and observe scattered protons? Homework EquationsThe Attempt at a Solution Part(b) [/B] Rate of...
49. ### Scaling of an eigenvalue with the coupling constant

Consider the Hamiltonian ##H = - \frac{d^2}{dx^2}+gx^{2N}##. Scaling out the coupling constant ##g##, the eigenvalues scale as ##\lambda \propto g^{\frac{2}{N+2}}##. So, we can drop the g dependence and just consider the numerical value of the eigenvalues and the associated spectral functions...
50. ### Scaling - Inverse relationship between uncertainty and mass

Scaling - Inverse relationship between uncertainty and mass I’m trying to express Heisenberg's Uncertainty Principle in a simplified formula that is not boundary unlimited and still capture what I believe is an inverse relationship between uncertainty and mass - the "scaling hypothesis". I...