MHB Interesting problem with ideals and function

AI Thread Summary
The discussion revolves around proving that the image of an ideal J of a ring A under the function f, defined as f(a) = (a,0) for all a in A, forms an ideal in the product ring A × Z. The function f is established as an injective ring homomorphism, and its image corresponds to A × {0}, which is isomorphic to A. The proof demonstrates that (J × {0}, +) is a subgroup of (A × Z, +) and satisfies the absorption properties required for ideals. The participants clarify the trivial nature of the subgroup property and confirm that both right and left absorption conditions hold true. The discussion concludes with a successful verification of the ideal properties in the context of the defined ring structure.
Krizalid1
Messages
106
Reaction score
0
Hi guys, it's been a while! Here's an interesting problem.

Let $A$ be a ring and $Z$ be the ring of $\mathbb Z.$ Consider the cartesian product $A\times Z.$
Define $A\times Z$ the product $(a,n)\cdot(b,m)=(ma+nb+ab,nm).$
Let $f:A\longmapsto A\times Z$ be defined by $f(a)=(a,0)$ for all $a$ in the ring $A.$ Prove that if $J$ is an ideal of $A,$ its image below the function $f$ is an ideal of the ring $A\times Z.$
 
Last edited:
Mathematics news on Phys.org
f is clearly an injective ring homomorphism since if f(a) = f(b), (a,0) = (b,0), and by the definition of equality in the cartesian set product, a = b. It is trivial to check that the image of f is A x {0}, which is ring-isomorphic to A.

In other words, the 0 in the 2nd coordinate in Z x A is "just along for the ride", it doesn't contribute any structure to f(A):

(a,0) + (b,0) = (a+b,0+0) = (a+b,0)

(a,0)*(b,0) = (ab,0*0) = (ab,0).
 
Checking the axioms of an ideal:

1. $(J \times \{0\}, +)$ is a sub group of $(A \times \mathbb Z, +)$.
2. $\forall (j,0) \in J \times \{0\}, \forall (r,z) \in A \times \mathbb Z: (j,0) \cdot(r,z) \in J \times \{0\}$.
3. $\forall (j,0) \in J \times \{0\}, \forall (r,z) \in A \times \mathbb Z: (r,z) \cdot(j,0) \in J \times \{0\}$.

These are all trivially true.

Erm... how is it interesting?
 
Last edited:
I've corrected the problem and added things I should've posted before.
Sorry for the inconvenients.
 
Krizalid said:
I've corrected the problem and added things I should've posted before.
Sorry for the inconvenients.

Okay... the subgroup property with respect to + is still trivial.
For right absorption we get:

$$\forall (j,0) \in J \times \{0\}, \forall (a,z) \in J \times \mathbb Z: \\
\qquad (j,0) \cdot (a,z) = (zj+0a+ja, 0z) = (j',0) \in J \times \{0\}$$
This is true, because:
  • $zj$ is a summation of elements in $J$, which is also an element of $J$,
  • $0a=0$,
  • $ja \in J$ because $J$ is an ideal of $A$.

Left absorption is similar.$\qquad \blacksquare$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top