MHB Interference in a Double-Slit Experiment

annikaw
Messages
1
Reaction score
0
In a double-slit experiment, the distance between slits is 5.0mm and the slits are 1.0m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 480nm, and the other due to light of wavelength 600nm. What is the separation on the screen between the third-order (m=3) bright fringes of the two interference patterns?

From my notes, I find that $d\sin\theta=m\lambda$.

However, I do not know how to get values of $\theta$ that can be put to the equation to find the difference in separation.
 
Last edited by a moderator:
Mathematics news on Phys.org
annikaw said:
In a double-slit experiment, the distance between slits is 5.0mm and the slits are 1.0m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 480nm, and the other due to light of wavelength 600nm. What is the separation on the screen between the third-order (m=3) bright fringes of the two interference patterns?

From my notes, I find that $d\sin\theta=m\lambda$.

However, I do not know how to get values of $\theta$ that can be put to the equation to find the difference in separation.

Hi annikaw! Welcome to MHB! (Smile)

Let's get a drawing of the situation:
View attachment 4506

We get a bright fringe when $d\sin\theta=m\lambda$.
The corresponding position on the screen is $OP=D\sin\theta$.

Can you deduce where the 2 requested fringes are?
 

Attachments

  • phys6_1f_11.png
    phys6_1f_11.png
    13.6 KB · Views: 94
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top