MHB Intersection Points & Finding Unknown Variable

Click For Summary
The line with equation y = x + k intersects the parabola y = x^2 + x − 2 at two distinct points based on the value of k. Setting the equations equal leads to the quadratic equation 0 = x^2 - 2 - k. The discriminant method is applied, revealing that for two distinct intersection points, k must be greater than -2. If k equals -2, there is only one intersection point, while k less than -2 results in no real solutions. Thus, the critical condition for intersection is k > -2.
confusedatmath
Messages
14
Reaction score
0
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = x^2 + x − 2 in two distinct points if

I first made the equations equal each other

x + k = x^2 + x − 2
0 = x^2 -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2
 
Mathematics news on Phys.org
confusedatmath said:
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = + x − 2 in two distinct points if

I first made the equations equal each other

x + k = + x − 2
0 = -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2

Hello.

Check the wording of the question. The parable, need that 'x' is not high to the power 1. (would be a straight line)

Regards.
 
mente oscura said:
Hello.

Check the wording of the question. The parable, need that 'x' is not high to the power 1. (would be a straight line)

Regards.
i fixed it :p read again, it was a mistake i forgot the x^2
 
confusedatmath said:
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = x^2 + x − 2 in two distinct points if

I first made the equations equal each other

x + k = x^2 + x − 2
0 = x^2 -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2

Now yes.

0=x^2-2-k

x^2=k+2

x=\pm{} \sqrt{k+2}

1º) k&lt;-2 \rightarrow{}x \cancel{\in}{R}

2º) k&gt;-2 \rightarrow{}x \in{R}

3º) k=-2 \rightarrow{}x=0, only a breakpoint.

Regards.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K