[Intro analysis] Prove lim s_n = 0

  • Thread starter Thread starter fishturtle1
  • Start date Start date
  • Tags Tags
    Analysis
Click For Summary
SUMMARY

The discussion focuses on proving that if the limit \( L = \lim \left| \frac{s_{n+1}}{s_n} \right| \) exists and \( L < 1 \), then \( \lim s_n = 0 \). The proof involves selecting \( a = L + \frac{1 - L}{2} \) to establish that \( |s_{n+1}| < a |s_n| \) for \( n \ge N \). By using induction, it is shown that \( |s_n| < a^{n-N} |s_N| \) for \( n > N \), leading to the conclusion that \( \lim |s_n| = 0 \) through the Squeeze lemma.

PREREQUISITES
  • Understanding of limits and convergence in sequences
  • Familiarity with the Squeeze lemma in analysis
  • Knowledge of induction proofs
  • Basic concepts of absolute values in inequalities
NEXT STEPS
  • Study the Squeeze lemma in detail to understand its applications in proofs
  • Learn about convergence criteria for sequences and series
  • Explore advanced topics in real analysis, focusing on limits and continuity
  • Practice induction proofs with various mathematical statements
USEFUL FOR

Students of mathematics, particularly those studying real analysis, educators teaching limits and convergence, and anyone interested in rigorous proof techniques in calculus.

fishturtle1
Messages
393
Reaction score
82

Homework Statement


Assume all ##s_n \neq 0## and that the limit ##L = \lim \vert \frac{s_{n+1}}{s_n} \vert ## exists.

a) Show that if ##L < 1##, then ##\lim s_n = 0##. (Hint: Select ##a## so that ##L < a < 1## and obtain ##N## s.t. ##\vert s_{n+1} \vert < a \vert s_n \vert## for ##n \ge N##. Then show ##\vert s_n \vert < a^{n - N} \vert s_N \vert## for ##n > N## ).

Homework Equations


Limit laws for addition/multiplication/scalar

The Attempt at a Solution


Proof of hint:
Let ##\varepsilon_1 = \frac{1 - L}{2}## and select ##a = L + \varepsilon_1##.
Then ##L < a < 1##.

Consider 3 cases:

Case 1: ##L < 1##. Then ##\varepsilon_1 > 0##.
By definition, for all ##\varepsilon > 0## there exists ##N## such that ##n > N## implies ##\vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon##. By triangle inequality and substitution, we have ##\vert \frac{s_{n+1}}{s_n} \vert - \vert L \vert \le \vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon_1##. So ##\frac{\vert s_{n+1} \vert}{\vert s_n \vert} < \varepsilon_1 + \vert L \vert = \varepsilon_1 + L = a##. Multiplying both sides by ##\vert s_n \vert## we get ##\vert s_{n+1} \vert < \vert s_n \vert a##.

Case 2: ##L > 1##. Then ##\varepsilon_1 < 0##. ...

Case 3: ##L = 1##. Then ##\varepsilon_1 = 0## ... So now i can't substitute for ##\varepsilon > 0## in the limit definition ...

I am asking for advice on how to proceed, please.
 
Physics news on Phys.org
You don't have to consider the cases for that hint. Notice that the hint says that ##L < 1##, so case 1 is sufficient.
 
Math_QED said:
You don't have to consider the cases for that hint. Notice that the hint says that ##L < 1##, so case 1 is sufficient.
! I completely missed that, thank you. I am going to start on the actual problem now then
 
well maybe I am still stuck on the hint,
edit:the case 1 is wrong i think.
Let ##L < 1##. Then ##\varepsilon_1 = \frac{1 - L}{2} > 0##. By definition, there exists ##N## such that ##n > N## implies ##\vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon_1##. By triangle inequality, ##\frac{\vert s_{n+1} \vert}{\vert s_n \vert} < \varepsilon_1 + \vert L \vert##. But ##L## could be less than 0. So I can't do the substitute ##a## like I did in OP.

Continuing from case 1...

We've shown ##\vert s_{n+1} \vert < a \vert s_n \vert##. We want to show ##\vert s_n \vert< a^{n-N} \vert s_N \vert## for ##n > N##.
For ##n > N##, ##\vert \frac{s_{n+1}}{s_n} - L \vert < \vert \frac{s_{N+1}}{s_N} - L \vert < \varepsilon##. By triangle inequality, ##\vert \frac{s_{n+1}}{s_n} \vert - \vert L \vert < \vert \frac{s_{N+1}}{s_N} - L \vert##. ...
 
Last edited:
fishturtle1 said:
well maybe I am still stuck on the hint,
edit:the case 1 is wrong i think.
Let ##L < 1##. Then ##\varepsilon_1 = \frac{1 - L}{2} > 0##. By definition, there exists ##N## such that ##n > N## implies ##\vert \frac{s_{n+1}}{s_n} - L \vert < \varepsilon_1##. By triangle inequality, ##\frac{\vert s_{n+1} \vert}{\vert s_n \vert} < \varepsilon_1 + \vert L \vert##.
Not quite true. ##\left|\frac{\vert s_{n+1} \vert}{\vert s_n \vert}-\vert L \vert\right| \leq \left|\frac{\vert s_{n+1} \vert}{\vert s_n \vert}-L\right|##. (Edited)

fishturtle1 said:
But ##L## could be less than 0. So I can't do the substitute ##a## like I did in OP.

Continuing from case 1...

We've shown ##\vert s_{n+1} \vert < a \vert s_n \vert##. We want to show ##\vert s_n \vert< a^{n-N} \vert s_N \vert## for ##n > N##.
For ##n > N##, ##\vert \frac{s_{n+1}}{s_n} - L \vert < \vert \frac{s_{N+1}}{s_N} - L \vert < \varepsilon##. By triangle inequality, ##\vert \frac{s_{n+1}}{s_n} \vert - \vert L \vert < \vert \frac{s_{N+1}}{s_N} - L \vert##. ...
##L = \lim \vert \frac{s_{n+1}}{s_n} \vert## and ##\vert \frac{s_{n+1}}{s_n} \vert > 0 ~\forall n##. So how can ##L## be less than zero?
 
tnich said:
Not quite true. ##\left|\frac{\vert s_{n+1} \vert}{\vert s_n \vert}-\vert L \vert\right| \leq \left|\frac{\vert s_{n+1} \vert}{\vert s_n \vert}-L\right|##. (Edited)##L = \lim \vert \frac{s_{n+1}}{s_n} \vert## and ##\vert \frac{s_{n+1}}{s_n} \vert > 0 ~\forall n##. So how can ##L## be less than zero?
Thanks for the reply, Here is what I have now from #5,

Proof of hint: Choose ##a = L + \frac{1-L}{2}##. We observe ##L \ge 0## since ##\vert\frac{s_{n+1}}{s_n}\vert > 0## for all ##n## so ##0## is always closer to our sequence than any negative number.

By definition of limit, there exists ##N## such that ##n \ge N## implies ##\frac{1-L}{2} > \vert \vert \frac{s_{n+1}}{s_n} \vert - L \vert \ge \vert \frac{s_{n+1}}{s_n} \vert - L## (since ##L \ge 0##). Adding ##L## and multiplying by ##\vert s_n \vert## gives ##\vert s_{n+1} \vert < \vert s_n \vert a##. ...

I'm not sure about the ##a^{n-N}##... It doesn't seem like ##(\vert s_n \vert)## is decr but the hint is suggesting that, I know that ##n - N > 0## so ##a^{N-n} < a## so ##\vert s_n \vert < a^{N-n}\vert s_n \vert##. Edit: I see that since ##L < 1##, ##(\vert s_n \vert)## must be str decr.

Edit2: Ok so from where we left off ... ##n > N## implies ## \vert s_{n+1} \vert < \vert s_n \vert a < \vert s_n\vert < \vert s_N \vert##. So ##\vert s_n \vert a < \vert s_N \vert##. Also, ##0 \le a^{n-N} \le a < 1##.

edit3: I think this is a proof by induction, will post when I have something.
 
Last edited:
fishturtle1 said:
Thanks for the reply, Here is what I have now from #5,

Proof of hint: Choose ##a = L + \frac{1-L}{2}##. We observe ##L \ge 0## since ##\vert\frac{s_{n+1}}{s_n}\vert > 0## for all ##n## so ##0## is always closer to our sequence than any negative number.

By definition of limit, there exists ##N## such that ##n \ge N## implies ##\frac{1-L}{2} > \vert \vert \frac{s_{n+1}}{s_n} \vert - L \vert \ge \vert \frac{s_{n+1}}{s_n} \vert - L## (since ##L \ge 0##). Adding ##L## and multiplying by ##\vert s_n \vert## gives ##\vert s_{n+1} \vert < \vert s_n \vert a##. ...

I'm not sure about the ##a^{n-N}##... It doesn't seem like ##(\vert s_n \vert)## is decr but the hint is suggesting that, I know that ##n - N > 0## so ##a^{N-n} < a## so ##\vert s_n \vert < a^{N-n}\vert s_n \vert##. Edit: I see that since ##L < 1##, ##(\vert s_n \vert)## must be str decr.

Edit2: Ok so from where we left off ... ##n > N## implies ## \vert s_{n+1} \vert < \vert s_n \vert a < \vert s_n\vert < \vert s_N \vert##. So ##\vert s_n \vert a < \vert s_N \vert##. Also, ##0 \le a^{n-N} \le a < 1##.
If ##\vert s_{n+1} \vert < a \vert s_n \vert##, then ##\vert s_{n} \vert < a \vert s_{n-1} \vert##, . . .
 
tnich said:
If ##\vert s_{n+1} \vert < a \vert s_n \vert##, then ##\vert s_{n} \vert < a \vert s_{n-1} \vert##, . . .
..So ##\vert s_{n+1} \vert < a^2 \vert s_{n-1} \vert##.. I think that is what you are suggesting? I use this idea below,

Proof: We know ##a \vert s_n \vert > \vert s_{n+1} \vert## for all ##n \ge N##. We proceed by induction. Let ##P(n)## be the assertion that ##a^{n-N} \vert s_N \vert > s_n## for all ##n > N##.

Base case: If ##n = N + 1## we know that ##a^{N+1 - N} \vert s_{N} \vert = a \vert s_N \vert > \vert s_{N+1} \vert## is true.

Inductive step: Suppose ##P(n)## is true for some ##n > N##. Then ##a^{n-N}\vert s_N \vert > \vert s_n \vert##. We also know ##a \vert s_n \vert > \vert s_{n+1} \vert##. Combining these inequalities gives, ##a^{n+1 - N} \vert s_N \vert > a \vert s_n \vert > \vert s_{n+1} \vert##. Thus, ##a^{(n+1) - N} \vert s_N \vert > \vert s_{n+1} \vert##. So ##P(n+1)## is true.

We can conclude ##P(n)## is true for all ##n > N##. ##\square##
 
fishturtle1 said:
..So ##\vert s_{n+1} \vert < a^2 \vert s_{n-1} \vert##.. I think that is what you are suggesting? I use this idea below,

Proof: We know ##a \vert s_n \vert > \vert s_{n+1} \vert## for all ##n \ge N##. We proceed by induction. Let ##P(n)## be the assertion that ##a^{n-N} \vert s_N \vert > s_n## for all ##n > N##.

Base case: If ##n = N + 1## we know that ##a^{N+1 - N} \vert s_{N} \vert = a \vert s_N \vert > \vert s_{N+1} \vert## is true.

Inductive step: Suppose ##P(n)## is true for some ##n > N##. Then ##a^{n-N}\vert s_N \vert > \vert s_n \vert##. We also know ##a \vert s_n \vert > \vert s_{n+1} \vert##. Combining these inequalities gives, ##a^{n+1 - N} \vert s_N \vert > a \vert s_n \vert > \vert s_{n+1} \vert##. Thus, ##a^{(n+1) - N} \vert s_N \vert > \vert s_{n+1} \vert##. So ##P(n+1)## is true.

We can conclude ##P(n)## is true for all ##n > N##. ##\square##
Well done. Now you just need one more step to show that ##lim~s_n = 0##.
 
  • Like
Likes fishturtle1
  • #10
tnich said:
Well done. Now you just need one more step to show that ##lim~s_n = 0##.
Full proof,

Proof: Assume ##s_n \neq 0## for all ##n## and ##L = \lim \vert \frac{s_{n+1}}{s_n} \vert## exists.

Choose ##a = L + \frac{1 - L}{2}##. Then ##L < a < 1##. By def of limit, there exists ##N## such that ##n \ge N## implies ##\vert \vert \frac{s_{n+1}}{s_n} \vert - L \vert < \frac{1 - L}{2}##. Observe, ##\frac{1 - L}{2} > \vert \vert \frac{s_{n+1}}{s_n} \vert - L \vert \ge \vert \frac{s_{n+1}}{s_n} \vert - L## since ##L \ge 0##. So ##\vert \frac{s_{n+1}}{s_n} \vert < L + \frac{1-L}{2} = a##. So ##\vert s_{n+1} \vert < a\vert s_n\vert##.

Now let ##P(n)## be the assertion that ##\vert s_n \vert < a^{n-N}\vert s_N \vert## for all ##n > N##. We proceed by induction.

(Base case) We've shown that ##\vert s_{N+1} \vert < a^{N+1-N}\vert s_N \vert = a \vert s_N \vert##.

(Inductive step) Suppose ##P(n)## is true for some ##n > N##. Then ##\vert s_n\vert < a^{n-N}\vert s_N \vert## for some ##n > N##. We also know ##\vert s_{n+1} \vert < a \vert s_n \vert ##. So, ##\vert s_{n+1} \vert < a \vert s_n \vert < a^{n+1 - N} \vert s_N \vert##. Thus ##\vert s_{n+1} \vert < a^{(n+1) - N} \vert s_N \vert## that is ##P(n+1)## is true.

We can conclude ##P(n)## is true for all ##n > N##.

Finally, we use the Squeeze lemma to show ##\lim \vert s_n \vert = 0##. We know ##0 \le \vert s_n \vert \le a^{n}\cdot \frac{1}{a^N}\cdot\vert s_N \vert##. We know ##\lim 0 = 0##. Also, ##\lim a^n = 0## and ##\lim \frac{1}{a^N} = \frac{1}{a^N}## and ## \lim \vert s_N \vert = \vert s_N \vert##. So ##\lim (a^n\cdot \frac{1}{a^N} \cdot \vert s_N \vert) = 0 \cdot \frac{1}{a^N} \cdot \vert s_N \vert = 0##. By Squeeze lemma, we can conclude ##\lim \vert s_n \vert = 0##. ##\square##

Thank you for your help and guiding me through this
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K