I Intuition regarding Riemann curvature tensor

Hill
Messages
735
Reaction score
575
TL;DR Summary
"Why" there are terms quadratic in first derivatives of metric?
The Riemann curvature tensor contains second derivatives of metric and squares of the first derivatives. The second derivatives have to be there because they are the ones that cannot be eliminated locally by a choice of coordinates. But other than being a mathematical artifact, is there a meaning for the squares of the first derivatives to be there?
 
Physics news on Phys.org
The first derivatives tell you directions. Curvature can be different in different directions. And the curvature in one direction can change as you move in a different direction
 
  • Like
Likes Hill and vanhees71
Hill said:
The second derivatives have to be there because they are the ones that cannot be eliminated locally by a choice of coordinates.
If you look at how this actually works, you find that in Riemann normal coordinates, which are the ones that eliminate everything that can be eliminated by a choice of coordinates, the first derivatives are zero at the origin of coordinates, i.e., at the point the coordinates are "centered" on. So at that point, the first derivatives indeed do not appear at all in the Riemann tensor.

But as soon as you move away from the origin, the first derivatives are no longer zero (because the second derivatives weren't zero at the origin), and they will be different depending on which direction you move. So you do need them to capture the complete behavior once you are away from the origin.
 
  • Like
Likes Hill and Dale
PeterDonis said:
But as soon as you move away from the origin, the first derivatives are no longer zero (because the second derivatives weren't zero at the origin)
lndeed, a zero second derivatives w.r.t. a coordinate basis at the origin, would mean constant first derivatives in a neighborhood of the origin, but first derivatives by definition vanish at the origin in Riemann normal coordinates centered on it.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top