D'Alembert's solution to the wave equation is(adsbygoogle = window.adsbygoogle || []).push({});

[tex]u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct} \psi(\xi)d\xi[/tex] where [itex]\phi(x) = u(x,0)[/itex] and [itex]\psi(x) = u_t (x,0)[/itex]. I'm trying to understand this intuitively. The first term I get: a function like f = 0 (x/=0), = a (x=0) will "break into two functions" and become f = a/2 (x = +/- ct), = 0 (x /= +/- ct). But I can't see how the integral term comes about. Does anyone here have a good physical intuition about this? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Intuitively d'Alembert's solution to 1D wave equation

**Physics Forums | Science Articles, Homework Help, Discussion**