MHB Inverse Laplace Transform problem

Click For Summary
The discussion focuses on an inverse Laplace transform problem where the user struggles to obtain the correct result. The user initially computes the inverse transforms but arrives at an incorrect expression compared to Mathematica's output. Key errors are identified in the handling of the second fraction, particularly in the application of the Laplace transform properties. A clearer approach is suggested, emphasizing the correct manipulation of terms to achieve the expected result. The final expression aligns with the Mathematica output, clarifying the user's misunderstanding.
Dustinsfl
Messages
2,217
Reaction score
5
I can't seem to part of an inverse Laplace transform correct.

\begin{align*}
f(t) &= \frac{6}{5}\mathcal{L}^{-1}\bigg\{\frac{1}{s + 2}\bigg\} +
\frac{3}{5}\mathcal{L}^{-1}\bigg\{\frac{3s - 1}
{s^2 + 5s + 11}\bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}
- \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} - \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{s^2\big|_{s\to s + \frac{5}{2}} + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}e^{-5/2t}
\cos\bigg(\frac{\sqrt{19}}{2}t\bigg) - \frac{6}{5\sqrt{19}}
e^{-5/2t}\sin\bigg(\frac{\sqrt{19}}{2}t\bigg)
\end{align*}

When I check this with Mathematica, I should have \(\frac{17}{5\sqrt{19}}e^{-5/2t}\sin\left(\frac{\sqrt{19}}{2}t\right)\).

What am I doing wrong?
 
Physics news on Phys.org
dwsmith said:
I can't seem to part of an inverse Laplace transform correct.

\begin{align*}
f(t) &= \frac{6}{5}\mathcal{L}^{-1}\bigg\{\frac{1}{s + 2}\bigg\} +
\frac{3}{5}\mathcal{L}^{-1}\bigg\{\frac{3s - 1}
{s^2 + 5s + 11}\bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}
- \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} - \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{s^2\big|_{s\to s + \frac{5}{2}} + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}e^{-5/2t}
\cos\bigg(\frac{\sqrt{19}}{2}t\bigg) - \frac{6}{5\sqrt{19}}
e^{-5/2t}\sin\bigg(\frac{\sqrt{19}}{2}t\bigg)
\end{align*}

When I check this with Mathematica, I should have \(\frac{17}{5\sqrt{19}}e^{-5/2t}\sin\left(\frac{\sqrt{19}}{2}t\right)\).

What am I doing wrong?

Careful!

\[\frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} \neq \frac{9}{5} e^{-5/2 t}\cos\Bigg(\frac{\sqrt{19}}{2}t\Bigg)\]

The result that you want is actually

\[\frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s\color{red}{\big|_{s\to s+\frac{5}{2}}}}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} = \frac{9}{5} e^{-5/2 t}\cos\Bigg(\frac{\sqrt{19}}{2}t\Bigg)\]

Let's start over with that second fraction; I would do things this way:

\[\begin{aligned}\frac{3}{5}\mathcal{L}^{-1}\Bigg\{\frac{3s-1}{s^2+5s+11}\Bigg\} &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{\frac{s-\frac{1}{3}}{\left(s+\frac{5}{2}\right)^2+\frac{19}{4}}\Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{\frac{s+\frac{5}{2} - \frac{17}{6}}{\left(s+\frac{5}{2} \right)^2 + \frac{19}{4} } \Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{ \frac{s+\frac{5}{2}}{\left(s+\frac{5}{2}\right)^2 + \frac{19}{4}}\Bigg\} - \frac{51}{10}\mathcal{L}^{-1}\Bigg\{ \frac{1}{\left(s+\frac{5}{2}\right)^2 + \frac{19}{4}} \Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{ \frac{s\big|_{s\to s+\frac{5}{2}}}{ s^2\big|_{s\to s+\frac{5}{2}} + \frac{19}{4}}\Bigg\} - \frac{51}{5\sqrt{19}}\mathcal{L}^{-1}\Bigg\{ \frac{\frac{\sqrt{19}}{2} }{s^2\big|_{s\to s+ \frac{5}{2}} + \frac{19}{4}} \Bigg\} \\ &= \frac{9}{5} e^{-5/2 t} \cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{51}{5\sqrt{19}}e^{-5/2 t} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \end{aligned}\]

Putting this together with the inverse Laplace Transform of the first fraction gives us

\[\begin{aligned} f(t) &= \frac{6}{5}e^{-2t} + \frac{9}{5} e^{-5/2 t} \cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{51}{5\sqrt{19}}e^{-5/2 t} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \\ &= \frac{3}{5}e^{-5/2 t}\Bigg( 2e^{t/2} + 3\cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{17}{\sqrt{19}} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \Bigg)\\ &= \frac{3}{95}e^{-5/2 t}\Bigg( 38e^{t/2} + 57\cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - 17\sqrt{19} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \Bigg)\end{aligned}\]

Which matches the answer given to me by Mathematica:

MHB_InverseLaplace.png

I hope this clarifies where you made your mistake! (Smile)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K