Inverse Laplace Transform problem

Click For Summary
SUMMARY

The forum discussion centers on resolving an inverse Laplace transform problem involving the expression \( f(t) = \frac{6}{5}\mathcal{L}^{-1}\left\{\frac{1}{s + 2}\right\} + \frac{3}{5}\mathcal{L}^{-1}\left\{\frac{3s - 1}{s^2 + 5s + 11}\right\} \). The user initially miscalculated the second term, leading to discrepancies when compared with Mathematica's output. The correct approach involves recognizing the proper transformation and simplification of the fractions, ultimately yielding the correct result of \( f(t) = \frac{3}{5}e^{-5/2 t}\left(2e^{t/2} + 3\cos\left(\frac{\sqrt{19}}{2} t\right) - \frac{17}{\sqrt{19}}\sin\left(\frac{\sqrt{19}}{2} t\right)\right) \).

PREREQUISITES
  • Understanding of inverse Laplace transforms
  • Familiarity with the properties of Laplace transforms
  • Knowledge of trigonometric functions and their relation to complex exponentials
  • Experience with mathematical software such as Mathematica
NEXT STEPS
  • Study the properties of the Laplace transform, focusing on linearity and shifting theorems
  • Learn how to apply the inverse Laplace transform to complex fractions
  • Explore the use of Mathematica for verifying mathematical transformations and calculations
  • Practice solving differential equations using inverse Laplace transforms
USEFUL FOR

Students, mathematicians, and engineers involved in control systems, signal processing, or any field requiring the application of inverse Laplace transforms for solving differential equations.

Dustinsfl
Messages
2,217
Reaction score
5
I can't seem to part of an inverse Laplace transform correct.

\begin{align*}
f(t) &= \frac{6}{5}\mathcal{L}^{-1}\bigg\{\frac{1}{s + 2}\bigg\} +
\frac{3}{5}\mathcal{L}^{-1}\bigg\{\frac{3s - 1}
{s^2 + 5s + 11}\bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}
- \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} - \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{s^2\big|_{s\to s + \frac{5}{2}} + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}e^{-5/2t}
\cos\bigg(\frac{\sqrt{19}}{2}t\bigg) - \frac{6}{5\sqrt{19}}
e^{-5/2t}\sin\bigg(\frac{\sqrt{19}}{2}t\bigg)
\end{align*}

When I check this with Mathematica, I should have \(\frac{17}{5\sqrt{19}}e^{-5/2t}\sin\left(\frac{\sqrt{19}}{2}t\right)\).

What am I doing wrong?
 
Physics news on Phys.org
dwsmith said:
I can't seem to part of an inverse Laplace transform correct.

\begin{align*}
f(t) &= \frac{6}{5}\mathcal{L}^{-1}\bigg\{\frac{1}{s + 2}\bigg\} +
\frac{3}{5}\mathcal{L}^{-1}\bigg\{\frac{3s - 1}
{s^2 + 5s + 11}\bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}
- \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{\big(s + \frac{5}{2}\big)^2 + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} - \frac{6}{5\sqrt{19}}\mathcal{L}^{-1}
\Bigg\{\frac{\frac{\sqrt{19}}{2}}
{s^2\big|_{s\to s + \frac{5}{2}} + \frac{19}{4}}\Bigg\}\\
&= \frac{6}{5}e^{-2t} + \frac{9}{5}e^{-5/2t}
\cos\bigg(\frac{\sqrt{19}}{2}t\bigg) - \frac{6}{5\sqrt{19}}
e^{-5/2t}\sin\bigg(\frac{\sqrt{19}}{2}t\bigg)
\end{align*}

When I check this with Mathematica, I should have \(\frac{17}{5\sqrt{19}}e^{-5/2t}\sin\left(\frac{\sqrt{19}}{2}t\right)\).

What am I doing wrong?

Careful!

\[\frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} \neq \frac{9}{5} e^{-5/2 t}\cos\Bigg(\frac{\sqrt{19}}{2}t\Bigg)\]

The result that you want is actually

\[\frac{9}{5}\mathcal{L}^{-1}
\Bigg\{\frac{s\color{red}{\big|_{s\to s+\frac{5}{2}}}}{s^2\big|_{s\to s + \frac{5}{2}} +
\frac{19}{4}}\Bigg\} = \frac{9}{5} e^{-5/2 t}\cos\Bigg(\frac{\sqrt{19}}{2}t\Bigg)\]

Let's start over with that second fraction; I would do things this way:

\[\begin{aligned}\frac{3}{5}\mathcal{L}^{-1}\Bigg\{\frac{3s-1}{s^2+5s+11}\Bigg\} &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{\frac{s-\frac{1}{3}}{\left(s+\frac{5}{2}\right)^2+\frac{19}{4}}\Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{\frac{s+\frac{5}{2} - \frac{17}{6}}{\left(s+\frac{5}{2} \right)^2 + \frac{19}{4} } \Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{ \frac{s+\frac{5}{2}}{\left(s+\frac{5}{2}\right)^2 + \frac{19}{4}}\Bigg\} - \frac{51}{10}\mathcal{L}^{-1}\Bigg\{ \frac{1}{\left(s+\frac{5}{2}\right)^2 + \frac{19}{4}} \Bigg\}\\ &= \frac{9}{5}\mathcal{L}^{-1}\Bigg\{ \frac{s\big|_{s\to s+\frac{5}{2}}}{ s^2\big|_{s\to s+\frac{5}{2}} + \frac{19}{4}}\Bigg\} - \frac{51}{5\sqrt{19}}\mathcal{L}^{-1}\Bigg\{ \frac{\frac{\sqrt{19}}{2} }{s^2\big|_{s\to s+ \frac{5}{2}} + \frac{19}{4}} \Bigg\} \\ &= \frac{9}{5} e^{-5/2 t} \cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{51}{5\sqrt{19}}e^{-5/2 t} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \end{aligned}\]

Putting this together with the inverse Laplace Transform of the first fraction gives us

\[\begin{aligned} f(t) &= \frac{6}{5}e^{-2t} + \frac{9}{5} e^{-5/2 t} \cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{51}{5\sqrt{19}}e^{-5/2 t} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \\ &= \frac{3}{5}e^{-5/2 t}\Bigg( 2e^{t/2} + 3\cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - \frac{17}{\sqrt{19}} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \Bigg)\\ &= \frac{3}{95}e^{-5/2 t}\Bigg( 38e^{t/2} + 57\cos\Bigg(\frac{\sqrt{19}}{2} t\Bigg) - 17\sqrt{19} \sin\Bigg(\frac{\sqrt{19}}{2} t\Bigg) \Bigg)\end{aligned}\]

Which matches the answer given to me by Mathematica:

MHB_InverseLaplace.png

I hope this clarifies where you made your mistake! (Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
10K