MHB Irrational Raised to Irrational

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Irrational
Click For Summary
An irrational number raised to an irrational power can indeed yield a rational result, as demonstrated with the example A = (sqrt{2})^(sqrt{2}). If A is rational, the question is resolved. If A is irrational, raising it to another irrational power, such as 2√2, results in a rational number, specifically 4. This conclusion is supported by Gelfond's Theorem, which states that an algebraic number raised to an algebraic irrational number is transcendental. Thus, the discussion confirms that the initial question can yield a rational outcome.
mathdad
Messages
1,280
Reaction score
0
Precalculus by David Cohen 3rd Edition
Chapter 1, Section 1.1.

Question 66, page 6.

Can an irrational number raised to an irrational power yield an answer that is rational?

Let A = (sqrt{2})^(sqrt{2}).

Now, either A is rational or irrational. If A is rational, we are done. Why? If A is irrational, we are done. Why?
 
Mathematics news on Phys.org
RTCNTC said:
Precalculus by David Cohen 3rd Edition
Chapter 1, Section 1.1.

Question 66, page 6.

Can an irrational number raised to an irrational power yield an answer that is rational?

Let A = (sqrt{2})^(sqrt{2}).

Now, either A is rational or irrational. If A is rational, we are done. Why? If A is irrational, we are done. Why?
I would start this from the other end! Take a rational number, say $4$. Can you express $4$ in the form $4 = a^b$, where $a$ and $b$ are both irrational?
 
A friend replied by saying the following:

"A useful result here is Gelfond's Theorem:

If a is an algebraic number, and b is an

algebraic irrational number, then a^b is

transcendental."

- - - Updated - - -

Let me see if I can answer your question.

Say a = (√2)^(√2)

Say b = 2√2

a^b = ((√2)^(√2))^(2√2) = (√2)^(√2*2√2) = (√2)^4 = 4

The answer is yes.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
6K