- #1

- 229

- 0

## Main Question or Discussion Point

Let R be a Noetherian Ring and I an ideal in R.

Let I = Q_1 n ... n Q_r = J_1 n ... n J_r be two primary decompositions of I.

How can I show the number of irreducible components in each decomposition is the same?

Let I = Q_1 n ... n Q_r = J_1 n ... n J_r be two primary decompositions of I.

How can I show the number of irreducible components in each decomposition is the same?