MHB Is 2 the Only Even Prime Number?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Prime
Click For Summary
2 is the only even prime number because it is greater than 1 and has no divisors other than 1 and itself. All other even numbers are divisible by 2, which disqualifies them from being prime. The confusion arises from equating prime numbers exclusively with odd numbers, which is incorrect. Prime numbers can include even numbers, with 2 being the sole even example. Understanding the definition of prime numbers clarifies why 2 holds this unique status.
mathdad
Messages
1,280
Reaction score
0
I know that 2 is an even number. I equate prime numbers with odd numbers. Why is 2 a prime number when it is listed in a group of odd numbers? Is 2 the only, even prime number? Why?
 
Mathematics news on Phys.org
RTCNTC said:
I know that 2 is an even number. I equate prime numbers with odd numbers. Why is 2 a prime number when it is listed in a group of odd numbers? Is 2 the only, even prime number? Why?

A prime number is a natural number greater than 1 that only has 1 and itself as factors. Since 2 is greater than 1 and only has 1 and 2 as factors, it is therefore a prime number. It is the only even prime number because all other even numbers also have 2 as a factor. :)
 
RTCNTC said:
I know that 2 is an even number. I equate prime numbers with odd numbers.
Well, there's your problem! You cannot "equate prime number with odd numbers". For one thing, the odd number, 9, is NOT prime!

Why is 2 a prime number when it is listed in a group of odd numbers? Is 2 the only, even prime number? Why?
Do you know what prime numbers are? What is your definition of "prime number"?
 
MarkFL said:
A prime number is a natural number greater than 1 that only has 1 and itself as factors. Since 2 is greater than 1 and only has 1 and 2 as factors, it is therefore a prime number. It is the only even prime number because all other even numbers also have 2 as a factor. :)

Thank you for your help.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
8K
  • · Replies 3 ·
Replies
3
Views
1K