MHB Is a finite group of homeomorphisms with no fixed points able to act properly discontinuously on a Hausdorff space?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
A finite group of homeomorphisms, where each non-identity element has no fixed points, can indeed act properly discontinuously on a Hausdorff space. The problem posed involves demonstrating this property of the group of homeomorphisms on the space. Despite the challenge, no participants managed to solve the problem this week. A solution is provided by the thread's author for further understanding. The discussion emphasizes the relationship between group actions and topological properties in Hausdorff spaces.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Suppose $\Gamma$ is a finite group of homeomorphisms of a Hausdorff space $M$ such that every non-identity element of $\Gamma$ is fixed point free. Show that $\Gamma$ acts on $M$ properly discontinuously.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one solved this week's problem. You can read my solution below.
Fix $p\in M$. For each $g\in \Gamma\setminus\{1\}$, $p \neq gp$. Since $M$ is Hausdorff, for every $g\in \Gamma\setminus\{1\}$, there are disjoint open sets $U_g \ni p$ and $V_g \ni gp$. Set $$W = \bigcap_{g\in \Gamma\setminus\{1\}} (U_g \cap g^{-1}(V_g))$$ Since each of the sets $U_g \cap g^{-1}(V_g)$ is an open neighborhood of $p$ and $\Gamma\setminus\{1\}$ is finite, then $W$ is open neighborhood of $p$. Given $g\neq 1$, $gW\cap W = \emptyset$. Indeed, if $gW\cap W \neq \emptyset$, then there are $w,w'\in W$ for which $gw = w'$. As $w'\in U_g$ and $w\in g^{-1}(V_g)$, we have $w' = gw \in U_g \cap V_g$, a contradiction. Consequently, $\Gamma$ acts on $M$ properly discontinuously.