Is A Identical if A is a Square Matrix with Full Rank?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the properties of an $m \times m$ matrix $A$ with full rank and the condition $A^2 = A$. Participants explore whether this implies that $A$ is the identity matrix, examining various mathematical arguments and counterexamples.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that if $A$ has rank $m$ and satisfies $A^2 = A$, then $A$ must be the identity matrix, leading to the equation $A(A-I) = 0$.
  • Others challenge this conclusion by providing a counterexample with a matrix that satisfies the equation but is not the identity matrix, questioning the validity of the initial reasoning.
  • One participant suggests using linear independence and the invertibility of $A$ to argue that $A = I$ follows from the properties of matrices with full rank.
  • Another participant emphasizes that it may be sufficient to state that a square matrix of full rank is invertible, which is a known property of matrices.

Areas of Agreement / Disagreement

Participants express disagreement regarding the conclusion that $A$ must be the identity matrix. Multiple competing views remain, with some supporting the original claim and others providing counterexamples and alternative reasoning.

Contextual Notes

Participants discuss the implications of matrix rank and the conditions under which a matrix is invertible, highlighting the need for careful consideration of definitions and properties without reaching a definitive conclusion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to prove that if a $m \times m$ matrix $A$ has rank $m$ and satisfies the condition $A^2=A$ then it will be identical.

$A^2=A \Rightarrow A^2-A=0 \Rightarrow A(A-I)=0$.

From this we get that either $A=0$ or $A=I$.

Since $A$ has rank $m$, it follows that it has $m$ non-zero rows, and so it cannot be $0$.

Thus $A=I$. Is everything right? Or could something be improved? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

I want to prove that if a $m \times m$ matrix $A$ has rank $m$ and satisfies the condition $A^2=A$ then it will be identical.

$A^2=A \Rightarrow A^2-A=0 \Rightarrow A(A-I)=0$.

From this we get that either $A=0$ or $A=I$.

Hey evinda!

I don't think we can draw that conclusion.
Consider $A=\begin{pmatrix}1&0\\1&0\end{pmatrix}$, what is $A(A-I)$? (Worried)
 
Klaas van Aarsen said:
Hey evinda!

I don't think we can draw that conclusion.
Consider $A=\begin{pmatrix}1&0\\1&0\end{pmatrix}$, what is $A(A-I)$? (Worried)

It is $0$ although neither $A$ nor $A-I$ is $0$.

How else can we get to the conclusion that $A=I$ ? (Thinking)

Do we use the linear independence? (Thinking)
 
evinda said:
It is $0$ although neither $A$ nor $A-I$ is $0$.

How else can we get to the conclusion that $A=I$ ?

Do we use the linear independence?

How about multiplying by $A^{-1}$?
$A$ is invertible isn't it? (Thinking)
 
Klaas van Aarsen said:
How about multiplying by $A^{-1}$?
$A$ is invertible isn't it? (Thinking)

So is it as follows? (Thinking)

Since the rank of the $m\times m$ matrix $A$ is $m$ we have that at the echelon form the matrix has no zero-rows. This implies that at the diagonal all elements are different from zero and this implies that the determinant is different from zero, since the determinant is equal to the product of the diagonal elements. Since the determinant is not equal to zero, the matrix is invertible. So $A^{-1}$ exists.

Thus $A^2-A=0 \Rightarrow A(A-I)=0 \Rightarrow A^{-1}A(A-I)=0 \Rightarrow A-I=0 \Rightarrow A=I$.

Is it complete now? Could we improve something? (Thinking)
 
evinda said:
So is it as follows?

Since the rank of the $m\times m$ matrix $A$ is $m$ we have that at the echelon form the matrix has no zero-rows. This implies that at the diagonal all elements are different from zero and this implies that the determinant is different from zero, since the determinant is equal to the product of the diagonal elements. Since the determinant is not equal to zero, the matrix is invertible. So $A^{-1}$ exists.

Thus $A^2-A=0 \Rightarrow A(A-I)=0 \Rightarrow A^{-1}A(A-I)=0 \Rightarrow A-I=0 \Rightarrow A=I$.

Is it complete now? Could we improve something?

All good. (Nod)

It may suffice to simply state that an $m\times m$ matrix of rank $m$ is invertible though.
It's a property of matrices:
If A is a square matrix (i.e., m = n), then A is invertible if and only if A has rank n (that is, A has full rank).

(Nerd)
 
Klaas van Aarsen said:
All good. (Nod)

It may suffice to simply state that an $m\times m$ matrix of rank $m$ is invertible though.
It's a property of matrices:
If A is a square matrix (i.e., m = n), then A is invertible if and only if A has rank n (that is, A has full rank).

(Nerd)


I see... Thanks a lot! (Party)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K