MHB Is A Invertible When Each Diagonal Element is Nonzero?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Let }$
$A=\textit{diag} (a_1,a_2,...,a_n)$.
$\textsf{Show that A is invertible iff each}$
$a_i\ne 0.$

$\textsf{Ok I didn't know formally how to answer this.}$
$\textsf{Except i can see that an $a=0$ would mess things up}$
 
Physics news on Phys.org
I don't know if this helps but a matrix is invertible iff its determinant is non-zero.
 
The inverse matrix for the diagonal matrix with a_1, a_2, … , a_n on the diagonal, is, rather trivially, the diagonal matrix with 1/a_1, 1/a_2, …, 1/a_n on the diagonal. Show that and you are finished.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
708
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K