MHB Is A Invertible When Each Diagonal Element is Nonzero?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Let }$
$A=\textit{diag} (a_1,a_2,...,a_n)$.
$\textsf{Show that A is invertible iff each}$
$a_i\ne 0.$

$\textsf{Ok I didn't know formally how to answer this.}$
$\textsf{Except i can see that an $a=0$ would mess things up}$
 
Physics news on Phys.org
I don't know if this helps but a matrix is invertible iff its determinant is non-zero.
 
The inverse matrix for the diagonal matrix with a_1, a_2, … , a_n on the diagonal, is, rather trivially, the diagonal matrix with 1/a_1, 1/a_2, …, 1/a_n on the diagonal. Show that and you are finished.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top