pmb_phy
- 2,950
- 1
I wasa responding to that comment about an aggregate of particles in free fall but I made the mistake of assuming that the poster was referring to a uniform g-field. I was actually responding to this comment:JesseM said:I wasn't thinking in terms of any technical term such as "geodesic deviation", when MeJennifer talked about "diverging geodesics in the direction of motion" I thought this was just a reference to Boustrophedon's earlier comment that "An aggregate of free falling test particles would move apart in the direction of motion but would not move together across the same direction."
As far as "real" gravitational field. What is "real" is what you define it to be. When Einstein created GR he defined the gravitational field such that a uniform gravitational field was equivalent to a uniformly accelerating frame of reference. That means that, according to Einstein, the quantity which determines the presense of a gravitational field is the non-vanishing of the affine connection and not the non-vanishing of the Riemann tensor.It might also be worth making a distinction between lateral and longitudinal tidal effects. All real gravitational fields have both and they only disappear when the field diminishes to zero eg. infinitely far from an isolated body or at the midpoint between two identical masses etc.
I recall an article written in the Am. J. Phys. by someone who associated gravity with spacetime curvature. He started off with a wrong definition. So when his derivation showed that the uniform g-field had spacetime curvature he didn't question his result, he strutted with pride that he proved that a uniform g-filed has tidal forces.
Pete