Is Contour Integration the Key to Solving This Integral?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
Contour integration is proposed as a method to solve the integral \(\int_{-\infty}^{\infty}\frac{\cos x}{(x^2+1)^2}\,dx\), with the expected result being \(\frac{\pi}{e}\). Sudharaka provided the correct solution to this problem, demonstrating the effectiveness of contour integration in evaluating such integrals. The discussion highlights the importance of advanced techniques in solving complex integrals. Overall, contour integration proves to be a valuable tool in this mathematical context.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem.

-----

Problem: Using contour integration, show that

\[\int_{-\infty}^{\infty}\frac{\cos x}{(x^2+1)^2}\,dx = \frac{\pi}{e}.\]

-----

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka. You can find his solution below.

Let us consider the contour integral, \(\displaystyle\int_{C}\frac{e^{iz}}{(z^2+1)^2}\) where \(C\) is the semicircle that bounds the upper half of the disk of radius \(a>1\) centered at the origin.

\[\int_{C}\frac{e^{iz}}{(z^2+1)^2}\,dz=\int_{C} \frac{\frac{e^{iz}}{(z+i)^2}}{(z-i)^2}\,dz\]Since both \(e^{iz}\) and \(\displaystyle\frac{1}{(z+i)^2}\) are holomorphic on and inside the contour \(C\), \(\displaystyle\frac{e^{iz}}{(z+i)^2}\) is also holomorphic on and inside \(C\). Also \(i\) lies within \(C\). Therefore by Cauchy's Integral formula we get,\begin{eqnarray}\int_{C}\frac{e^{iz}}{(z^2+1)^2}\,dz&=&2\pi i\frac{d}{dz}\left[\frac{e^{iz}}{(z+i)^2}\right]_{z=i}\\&=&\frac{\pi}{e}\\\end{eqnarray}Note that, \(\displaystyle\int_{C}\frac{e^{iz}}{(z^2+1)^2}\,dz=\int_{-a}^{a}\frac{e^{iz}}{(z^2+1)^2}\,dz+\int_{arc}\frac{e^{iz}}{(z^2+1)^2}\,dz\) where \(arc\) is the arc of the semicircle \(C\).\[\therefore\int_{-a}^{a}\frac{e^{iz}}{(z^2+1)^2}\,dz=\frac{\pi}{e}-\int_{arc}\frac{e^{iz}}{(z^2+1)^2}\,dz~~~~~~~~~~~(1)\]On the semicircular arc, \(z=a(\cos\theta+i\sin\theta)\mbox{ where }0\leq\theta\leq\pi\mbox{ is the argument of }z.\)\begin{eqnarray}\therefore|e^{iz}|&=&|e^{ia(\cos\theta+i\sin\theta)}|\\&=&e^{-a\sin\theta}~~~~~~~~~~~~(2)\\\end{eqnarray}Since \(a>1\) by the reverse triangle inequality we get,\[|z^2+1|^2\geq||z|^2-1|^2=(a^2-1)^2\]\[\Rightarrow\frac{1}{|z^2+1|}\leq\frac{1}{(a^2-1)^2}~~~~~~~~~~~~~(3)\]By (2) and (3),\[\left|\frac{e^{iz}}{(z^2+1)^2}\right|\leq\frac{e^{-a\sin\theta}}{(a^2-1)^2}~~~~~~~~~~~~(4)\]Applying the Estimation lemma to, \(\displaystyle\int_{arc}\frac{e^{iz}}{(z^2+1)^2} \,dz\) and using (4) we get,\[\left|\int_{arc}\frac{e^{iz}}{(z^2+1)^2}\,dz\right|\leq\frac{\pi ae^{-a\sin\theta}}{(a^2-1)^2}\mbox{ where }a>1\mbox{ and }0\leq\theta\leq\pi\] Therefore by the Squeeze theorem,\[\lim_{a\rightarrow\infty}\int_{arc}\frac{e^{iz}}{(z^2+1)^2}\,dz=0~~~~~~~~~~~(5)\]By (1) and (5),\[\lim_{a\rightarrow\infty}\int_{-a}^{a}\frac{e^{iz}}{(z^2+1)^2}\,dz=\frac{\pi}{e}\]Using the Euler's formula we get,
\[\lim_{a\rightarrow\infty}\left[\int_{-a}^{a}\frac{\cos x}{(x^2+1)^2}\,dx+i\int_{-a}^{a}\frac{\sin x}{(x^2+1)^2}\,dx\right] = \frac{\pi}{e}\]Since, \(\displaystyle\frac{\sin x}{(x^2+1)^2}\) is an odd function, \(\displaystyle\int_{-a}^{a}\frac{\sin x}{(x^2+1)^2}\,dx = 0\).\[\therefore\int_{-\infty}^{\infty}\frac{\cos x}{(x^2+1)^2}\,dx = \frac{\pi}{e}\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K